Ophthalmology (Eye & Ear Hospital) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium
    Verhoeven, VJM ; Hysi, PG ; Saw, S-M ; Vitart, V ; Mirshahi, A ; Guggenheim, JA ; Cotch, MF ; Yamashiro, K ; Baird, PN ; Mackey, DA ; Wojciechowski, R ; Ikram, MK ; Hewitt, AW ; Duggal, P ; Janmahasatian, S ; Khor, C-C ; Fan, Q ; Zhou, X ; Young, TL ; Tai, E-S ; Goh, L-K ; Li, Y-J ; Aung, T ; Vithana, E ; Teo, Y-Y ; Tay, W ; Sim, X ; Rudan, I ; Hayward, C ; Wright, AF ; Polasek, O ; Campbell, H ; Wilson, JF ; Fleck, BW ; Nakata, I ; Yoshimura, N ; Yamada, R ; Matsuda, F ; Ohno-Matsui, K ; Nag, A ; McMahon, G ; St Pourcain, B ; Lu, Y ; Rahi, JS ; Cumberland, PM ; Bhattacharya, S ; Simpson, CL ; Atwood, LD ; Li, X ; Raffel, LJ ; Murgia, F ; Portas, L ; Despriet, DDG ; van Koolwijk, LME ; Wolfram, C ; Lackner, KJ ; Toenjes, A ; Maegi, R ; Lehtimaki, T ; Kahonen, M ; Esko, T ; Metspalu, A ; Rantanen, T ; Parssinen, O ; Klein, BE ; Meitinger, T ; Spector, TD ; Oostra, BA ; Smith, AV ; de Jong, PTVM ; Hofman, A ; Amin, N ; Karssen, LC ; Rivadeneira, F ; Vingerling, JR ; Eiriksdottir, G ; Gudnason, V ; Doering, A ; Bettecken, T ; Uitterlinden, AG ; Williams, C ; Zeller, T ; Castagne, R ; Oexle, K ; van Duijn, CM ; Iyengar, SK ; Mitchell, P ; Wang, JJ ; Hoehn, R ; Pfeiffer, N ; Bailey-Wilson, JE ; Stambolian, D ; Wong, T-Y ; Hammond, CJ ; Klaver, CCW (SPRINGER, 2012-09)
    Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87 × 10(-12) for SNP rs634990 in Caucasians, and 9.65 × 10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20 × 10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95 % CI 1.64, 2.16, P < 0.001) for homozygous carriers of the risk allele at the top SNP rs634990, and OR 1.33 (95 % CI 1.19, 1.49, P < 0.001) for heterozygous carriers. SNPs at locus 15q25 did not replicate significantly (P value 5.81 × 10(-2) for top SNP rs939661). We conclude that common variants at chromosome 15q14 influence susceptibility for myopia in Caucasian and Asian populations world-wide.
  • Item
    No Preview Available
    Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma
    Bailey, JNC ; Loomis, SJ ; Kang, JH ; Allingham, RR ; Gharahkhani, P ; Khor, CC ; Burdon, KP ; Aschard, H ; Chasman, DI ; Igo, RP ; Hysi, PG ; Glastonbury, CA ; Ashley-Koch, A ; Brilliant, M ; Brown, AA ; Budenz, DL ; Buil, A ; Cheng, C-Y ; Choi, H ; Christen, WG ; Curhan, G ; De Vivo, I ; Fingert, JH ; Foster, PJ ; Fuchs, C ; Gaasterland, D ; Gaasterland, T ; Hewitt, AW ; Hu, F ; Hunter, DJ ; Khawaja, AP ; Lee, RK ; Li, Z ; Lichter, PR ; Mackey, DA ; McGuffin, P ; Mitchell, P ; Moroi, SE ; Perera, SA ; Pepper, KW ; Qi, Q ; Realini, T ; Richards, JE ; Ridker, PM ; Rimm, E ; Ritch, R ; Ritchie, M ; Schuman, JS ; Scott, WK ; Singh, K ; Sit, AJ ; Song, YE ; Tamimi, RM ; Topouzis, F ; Viswanathan, AC ; Verma, SS ; Vollrath, D ; Wang, JJ ; Weisschuh, N ; Wissinger, B ; Wollstein, G ; Wong, TY ; Yaspan, BL ; Zack, DJ ; Zhang, K ; Weinreb, RN ; Pericak-Vance, MA ; Small, K ; Hammond, CJ ; Aung, T ; Liu, Y ; Vithana, EN ; MacGregor, S ; Craig, JE ; Kraftl, P ; Howell, G ; Hauser, MA ; Pasguale, LR ; Haines, JL ; Wiggs, JL (NATURE PUBLISHING GROUP, 2016-02)
    Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10(-11)) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10(-10)); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10(-10)). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.
  • Item
    No Preview Available
    Genetic Loci for Retinal Arteriolar Microcirculation
    Sim, X ; Jensen, RA ; Ikram, MK ; Cotch, MF ; Li, X ; MacGregor, S ; Xie, J ; Smith, AV ; Boerwinkle, E ; Mitchell, P ; Klein, R ; Klein, BEK ; Glazer, NL ; Lumley, T ; McKnight, B ; Psaty, BM ; de Jong, PTVM ; Hofman, A ; Rivadeneira, F ; Uitterlinden, AG ; van Duijn, CM ; Aspelund, T ; Eiriksdottir, G ; Harris, TB ; Jonasson, F ; Launer, LJ ; Attia, J ; Baird, PN ; Harrap, S ; Holliday, EG ; Inouye, M ; Rochtchina, E ; Scott, RJ ; Viswanathan, A ; Li, G ; Smith, NL ; Wiggins, KL ; Kuo, JZ ; Taylor, KD ; Hewitt, AW ; Martin, NG ; Montgomery, GW ; Sun, C ; Young, TL ; Mackey, DA ; van Zuydam, NR ; Doney, ASF ; Palmer, CNA ; Morris, AD ; Rotter, JI ; Tai, ES ; Gudnason, V ; Vingerling, JR ; Siscovick, DS ; Wang, JJ ; Wong, TY ; Wallace, GR (PUBLIC LIBRARY SCIENCE, 2013-06-12)
    Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.
  • Item
    No Preview Available
    Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo
    Ikram, MK ; Xueling, S ; Jensen, RA ; Cotch, MF ; Hewitt, AW ; Ikram, MA ; Wang, JJ ; Klein, R ; Klein, BEK ; Breteler, MMB ; Cheung, N ; Liew, G ; Mitchell, P ; Uitterlinden, AG ; Rivadeneira, F ; Hofman, A ; de Jong, PTVM ; van Duijn, CM ; Kao, L ; Cheng, C-Y ; Smith, AV ; Glazer, NL ; Lumley, T ; McKnight, B ; Psaty, BM ; Jonasson, F ; Eiriksdottir, G ; Aspelund, T ; Harris, TB ; Launer, LJ ; Taylor, KD ; Li, X ; Iyengar, SK ; Xi, Q ; Sivakumaran, TA ; Mackey, DA ; MacGregor, S ; Martin, NG ; Young, TL ; Bis, JC ; Wiggins, KL ; Heckbert, SR ; Hammond, CJ ; Andrew, T ; Fahy, S ; Attia, J ; Holliday, EG ; Scott, RJ ; Islam, FMA ; Rotter, JI ; McAuley, AK ; Boerwinkle, E ; Tai, ES ; Gudnason, V ; Siscovick, DS ; Vingerling, JR ; Wong, TY ; McCarthy, MI (PUBLIC LIBRARY SCIENCE, 2010-10)
    There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n  =  6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p  =  1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p = 1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p  =  2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.
  • Item
    Thumbnail Image
    Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium
    Fan, Q ; Guo, X ; Tideman, JWL ; Williams, KM ; Yazar, S ; Hosseini, SM ; Howe, LD ; St Pourcain, B ; Evans, DM ; Timpson, NJ ; McMahon, G ; Hysi, PG ; Krapohl, E ; Wang, YX ; Jonas, JB ; Baird, PN ; Wang, JJ ; Cheng, C-Y ; Teo, Y-Y ; Wong, T-Y ; Ding, X ; Wojciechowski, R ; Young, TL ; Parssinen, O ; Oexle, K ; Pfeiffer, N ; Bailey-Wilson, JE ; Paterson, AD ; Klaver, CCW ; Plomin, R ; Hammond, CJ ; Mackey, DA ; He, M ; Saw, S-M ; Williams, C ; Guggenheim, JA (NATURE PORTFOLIO, 2016-05-13)
    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).
  • Item
    Thumbnail Image
    Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error
    Fan, Q ; Verhoeven, VJM ; Wojciechowski, R ; Barathi, VA ; Hysi, PG ; Guggenheim, JA ; Hoehn, R ; Vitart, V ; Khawaja, AP ; Yamashiro, K ; Hosseini, SM ; Lehtimaki, T ; Lu, Y ; Haller, T ; Xie, J ; Delcourt, C ; Pirastu, M ; Wedenoja, J ; Gharahkhani, P ; Venturini, C ; Miyake, M ; Hewitt, AW ; Guo, X ; Mazur, J ; Huffman, JE ; Williams, KM ; Polasek, O ; Campbell, H ; Rudan, I ; Vatavuk, Z ; Wilson, JF ; Joshi, PK ; McMahon, G ; St Pourcain, B ; Evans, DM ; Simpson, CL ; Schwantes-An, T-H ; Igo, RP ; Mirshahi, A ; Cougnard-Gregoire, A ; Bellenguez, C ; Blettner, M ; Raitakari, O ; Kaehoenen, M ; Seppala, I ; Zeller, T ; Meitinger, T ; Ried, JS ; Gieger, C ; Portas, L ; van Leeuwen, EM ; Amin, N ; Uitterlinden, AG ; Rivadeneira, F ; Hofman, A ; Vingerling, JR ; Wang, YX ; Wang, X ; Boh, ET-H ; Ikram, MK ; Sabanayagam, C ; Gupta, P ; Tan, V ; Zhou, L ; Ho, CEH ; Lim, W ; Beuerman, RW ; Siantar, R ; Tai, E-S ; Vithana, E ; Mihailov, E ; Khor, C-C ; Hayward, C ; Luben, RN ; Foster, PJ ; Klein, BEK ; Klein, R ; Wong, H-S ; Mitchell, P ; Metspalu, A ; Aung, T ; Young, TL ; He, M ; Paerssinen, O ; van Duijn, CM ; Wang, JJ ; Williams, C ; Jonas, JB ; Teo, Y-Y ; David, AMM ; Oexle, K ; Yoshimura, N ; Paterson, AD ; Pfeiffer, N ; Wong, T-Y ; Baird, PN ; Stambolian, D ; Bailey-Wilson, JE ; Cheng, C-Y ; Hammond, CJ ; Klaver, CCW ; Saw, S-M ; Rahi, JS ; Korobelnik, J-F ; Kemp, JP ; Timpson, NJ ; Smith, GD ; Craig, JE ; Burdon, KP ; Fogarty, RD ; Iyengar, SK ; Chew, E ; Janmahasatian, S ; Martin, NG ; MacGregor, S ; Xu, L ; Schache, M ; Nangia, V ; Panda-Jonas, S ; Wright, AF ; Fondran, JR ; Lass, JH ; Feng, S ; Zhao, JH ; Khaw, K-T ; Wareham, NJ ; Rantanen, T ; Kaprio, J ; Pang, CP ; Chen, LJ ; Tam, PO ; Jhanji, V ; Young, AL ; Doering, A ; Raffel, LJ ; Cotch, M-F ; Li, X ; Yip, SP ; Yap, MKH ; Biino, G ; Vaccargiu, S ; Fossarello, M ; Fleck, B ; Yazar, S ; Tideman, JWL ; Tedja, M ; Deangelis, MM ; Morrison, M ; Farrer, L ; Zhou, X ; Chen, W ; Mizuki, N ; Meguro, A ; Makela, KM (NATURE PUBLISHING GROUP, 2016-04)
    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.
  • Item
    Thumbnail Image
    Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus
    Donnelly, P ; Strange, A ; Bellenguez, C ; Sim, X ; Luben, R ; Hysi, PG ; Ramdas, WD ; van Koolwijk, LME ; Freeman, C ; Pirinen, M ; Su, Z ; Band, G ; Pearson, R ; Vukcevic, D ; Langford, C ; Deloukas, P ; Hunt, S ; Gray, E ; Dronov, S ; Potter, SC ; Tashakkori-Ghanbaria, A ; Edkins, S ; Bumpstead, SJ ; Blackwell, JM ; Bramon, E ; Brown, MA ; Casas, JP ; Corvin, A ; Duncanson, A ; Jankowski, JAZ ; Markus, HS ; Mathew, CG ; Palmer, CNA ; Plomin, R ; Rautanen, A ; Sawcer, SJ ; Wood, NW ; Trembath, RC ; Barroso, I ; Peltonen, L ; Healey, P ; McGuffin, P ; Topouzis, F ; Klaver, CCW ; van Duijn, CM ; Mackey, DA ; Young, TL ; Hammond, CJ ; Khaw, K-T ; Wareham, N ; Wang, JJ ; Wong, TY ; Foster, PJ ; Mitchell, P ; Spencer, CCA ; Donnelly, P ; Viswanathan, AC (OXFORD UNIV PRESS, 2013-11-15)
    To discover quantitative trait loci for intraocular pressure, a major risk factor for glaucoma and the only modifiable one, we performed a genome-wide association study on a discovery cohort of 2175 individuals from Sydney, Australia. We found a novel association between intraocular pressure and a common variant at 7p21 near to GLCCI1 and ICA1. The findings in this region were confirmed through two UK replication cohorts totalling 4866 individuals (rs59072263, P(combined) = 1.10 × 10(-8)). A copy of the G allele at this SNP is associated with an increase in mean IOP of 0.45 mmHg (95%CI = 0.30-0.61 mmHg). These results lend support to the implication of vesicle trafficking and glucocorticoid inducibility pathways in the determination of intraocular pressure and in the pathogenesis of primary open-angle glaucoma.
  • Item
    Thumbnail Image
    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases (vol 9, 1864, 2018)
    Iglesias, AI ; Mishra, A ; Vitart, V ; Bykhovskaya, Y ; Hoehn, R ; Springelkamp, H ; Cuellar-Partida, G ; Gharahkhani, P ; Bailey, JNC ; Willoughby, CE ; Li, X ; Yazar, S ; Nag, A ; Khawaja, AP ; Polasek, O ; Siscovick, D ; Mitchell, P ; Tham, YC ; Haines, JL ; Kearns, LS ; Hayward, C ; Shi, Y ; van Leeuwen, EM ; Taylor, KD ; Bonnemaijer, P ; Rotter, JI ; Martin, NG ; Zeller, T ; Mills, RA ; Souzeau, E ; Staffieri, SE ; Jonas, JB ; Schmidtmann, I ; Boutin, T ; Kang, JH ; Lucas, SEM ; Wong, TY ; Beutel, ME ; Wilson, JF ; Uitterlinden, AG ; Vithana, EN ; Foster, PJ ; Hysi, PG ; Hewitt, AW ; Khor, CC ; Pasquale, LR ; Montgomery, GW ; Klaver, CCW ; Aung, T ; Pfeiffer, N ; Mackey, DA ; Hammond, CJ ; Cheng, C-Y ; Craig, JE ; Rabinowitz, YS ; Wiggs, JL ; Burdon, KP ; van Duijn, CM ; MacGregor, S ; Wang, JJ ; Rochtchina, E ; Attia, J ; Scott, R ; Holliday, EG ; Wong, TY ; Baird, PN ; Xie, J ; Inouye, M ; Viswanathan, A ; Sim, X ; Allingham, RR ; Brilliant, MH ; Budenz, DL ; Christen, WG ; Fingert, J ; Friedman, DS ; Gaasterland, D ; Gaasterland, T ; Hauser, MA ; Kraft, P ; Lee, RK ; Lichter, PR ; Liu, Y ; Loomis, SJ ; Moroi, SE ; Pericak-Vance, MA ; Realini, A ; Richards, JE ; Schuman, JS ; Scott, WK ; Singh, K ; Sit, AJ ; Vollrath, D ; Weinreb, RN ; Wollstein, G ; Zack, DJ ; Zhang, K ; Donnelly, P ; Barroso, I ; Blackwell, JM ; Bramon, E ; Brown, MA ; Casas, JP ; Corvin, A ; Deloukas, P ; Duncanson, A ; Jankowski, J ; Markus, HS ; Mathew, CG ; Palmer, CNA ; Plomin, R ; Rautanen, A ; Sawcer, SJ ; Trembath, RC ; Wood, NW ; Spencer, CCA ; Band, G ; Bellenguez, C ; Freeman, C ; Hellenthal, G ; Giannoulatou, E ; Pirinen, M ; Pearson, R ; Strange, A ; Su, Z ; Vukcevic, D ; Langford, C ; Hunt, SE ; Edkins, S ; Gwilliam, R ; Blackburn, H ; Bumpstead, SJ ; Dronov, S ; Gillman, M ; Gray, E ; Hammond, N ; Jayakumar, A ; McCann, OT ; Liddle, J ; Potter, SC ; Ravindrarajah, R ; Ricketts, M ; Waller, M ; Weston, P ; Widaa, S ; Whittaker, P (NATURE PUBLISHING GROUP, 2019-01-08)
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article.