Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    RIPK3 controls MAIT cell accumulation during development but not during infection
    Patton, T ; Zhao, Z ; Lim, XY ; Eddy, E ; Wang, H ; Nelson, AG ; Ennis, B ; Eckle, SBG ; Souter, MNT ; Pediongco, TJ ; Koay, H-F ; Zhang, J-G ; Djajawi, TM ; Louis, C ; Lalaoui, N ; Jacquelot, N ; Lew, AM ; Pellicci, DG ; McCluskey, J ; Zhan, Y ; Chen, Z ; Lawlor, KE ; Corbett, AJ (SPRINGERNATURE, 2023-02-11)
    Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    No Preview Available
    The balance of interleukin-12 and interleukin-23 determines the bias of MAIT1 versus MAIT17 responses during bacterial infection
    Wang, H ; Nelson, AG ; Wang, B ; Zhao, Z ; Lim, XY ; Shi, M ; Meehan, LJ ; Jia, X ; Kedzierska, K ; Meehan, BS ; Eckle, SBG ; Souter, MNT ; Pediongco, TJ ; Mak, JYW ; Fairlie, DP ; McCluskey, J ; Wang, Z ; Corbett, AJ ; Chen, Z (WILEY, 2022-08)
    Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells mediating protection against bacterial infection through recognition of microbial metabolites derived from riboflavin biosynthesis. Mouse MAIT cells egress from the thymus as two main subpopulations with distinct functions, namely, T-bet-expressing MAIT1 and RORγt-expressing MAIT17 cells. Previously, we reported that inducible T-cell costimulator and interleukin (IL)-23 provide essential signals for optimal MHC-related protein 1 (MR1)-dependent activation and expansion of MAIT17 cells in vivo. Here, in a model of tularemia, in which MAIT1 responses predominate, we demonstrate that IL-12 and IL-23 promote MAIT1 cell expansion during acute infection and that IL-12 is indispensable for MAIT1 phenotype and function. Furthermore, we showed that the bias toward MAIT1 or MAIT17 responses we observed during different bacterial infections was determined and modulated by the balance between IL-12 and IL-23 and that these responses could be recapitulated by cytokine coadministration with antigen. Our results indicate a potential for tailored immunotherapeutic interventions via MAIT cell manipulation.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Abrignani, S ; Addo, R ; Akdis, M ; Andrae, I ; Andreata, F ; Annunziato, F ; Arranz, E ; Bacher, P ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Baumjohann, D ; Beccaria, CG ; Bernardo, D ; Boardman, DA ; Borger, J ; Boettcher, C ; Brockmann, L ; Burns, M ; Busch, DH ; Cameron, G ; Cammarata, I ; Cassotta, A ; Chang, Y ; Chirdo, FG ; Christakou, E ; Cicin-Sain, L ; Cook, L ; Corbett, AJ ; Cornelis, R ; Cosmi, L ; Davey, MS ; De Biasi, S ; De Simone, G ; del Zotto, G ; Delacher, M ; Di Rosa, F ; Di Santo, J ; Diefenbach, A ; Dong, J ; Doerner, T ; Dress, RJ ; Dutertre, C-A ; Eckle, SBG ; Eede, P ; Evrard, M ; Falk, CS ; Feuerer, M ; Fillatreau, S ; Fiz-Lopez, A ; Follo, M ; Foulds, GA ; Froebel, J ; Gagliani, N ; Galletti, G ; Gangaev, A ; Garbi, N ; Garrote, JA ; Geginat, J ; Gherardin, NA ; Gibellini, L ; Ginhoux, F ; Godfrey, DI ; Gruarin, P ; Haftmann, C ; Hansmann, L ; Harpur, CM ; Hayday, AC ; Heine, G ; Hernandez, DC ; Herrmann, M ; Hoelsken, O ; Huang, Q ; Huber, S ; Huber, JE ; Huehn, J ; Hundemer, M ; Hwang, WYK ; Iannacone, M ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Keller, B ; Kessler, N ; Ketelaars, S ; Knop, L ; Knopf, J ; Koay, H-F ; Kobow, K ; Kriegsmann, K ; Kristyanto, H ; Krueger, A ; Kuehne, JF ; Kunze-Schumacher, H ; Kvistborg, P ; Kwok, I ; Latorre, D ; Lenz, D ; Levings, MK ; Lino, AC ; Liotta, F ; Long, HM ; Lugli, E ; MacDonald, KN ; Maggi, L ; Maini, MK ; Mair, F ; Manta, C ; Manz, RA ; Mashreghi, M-F ; Mazzoni, A ; McCluskey, J ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Monin, L ; Moretta, L ; Multhoff, G ; Munoz, LE ; Munoz-Ruiz, M ; Muscate, F ; Natalini, A ; Neumann, K ; Ng, LG ; Niedobitek, A ; Niemz, J ; Almeida, LN ; Notarbartolo, S ; Ostendorf, L ; Pallett, LJ ; Patel, AA ; Percin, GI ; Peruzzi, G ; Pinti, M ; Pockley, AG ; Pracht, K ; Prinz, I ; Pujol-Autonell, I ; Pulvirenti, N ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Rhys, H ; Rodrigo, MB ; Romagnani, C ; Saggau, C ; Sakaguchi, S ; Sallusto, F ; Sanderink, L ; Sandrock, I ; Schauer, C ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schober, K ; Schoen, J ; Schuh, W ; Schueler, T ; Schulz, AR ; Schulz, S ; Schulze, J ; Simonetti, S ; Singh, J ; Sitnik, KM ; Stark, R ; Starossom, S ; Stehle, C ; Szelinski, F ; Tan, L ; Tarnok, A ; Tornack, J ; Tree, TIM ; van Beek, JJP ; van de Veen, W ; van Gisbergen, K ; Vasco, C ; Verheyden, NA ; von Borstel, A ; Ward-Hartstonge, KA ; Warnatz, K ; Waskow, C ; Wiedemann, A ; Wilharm, A ; Wing, J ; Wirz, O ; Wittner, J ; Yang, JHM ; Yang, J (WILEY, 2021-12)
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
  • Item
    Thumbnail Image
    Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection
    Zhao, Z ; Wang, H ; Shi, M ; Zhu, T ; Pediongco, T ; Lim, XY ; Meehan, BS ; Nelson, AG ; Fairlie, DP ; Mak, JYW ; Eckle, SBG ; Moreira, MDL ; Tumpach, C ; Bramhall, M ; Williams, CG ; Lee, HJ ; Haque, A ; Evrard, M ; Rossjohn, J ; McCluskey, J ; Corbett, AJ ; Chen, Z (NATURE PORTFOLIO, 2021-07-16)
    Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.