Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Abrignani, S ; Addo, R ; Akdis, M ; Andrae, I ; Andreata, F ; Annunziato, F ; Arranz, E ; Bacher, P ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Baumjohann, D ; Beccaria, CG ; Bernardo, D ; Boardman, DA ; Borger, J ; Boettcher, C ; Brockmann, L ; Burns, M ; Busch, DH ; Cameron, G ; Cammarata, I ; Cassotta, A ; Chang, Y ; Chirdo, FG ; Christakou, E ; Cicin-Sain, L ; Cook, L ; Corbett, AJ ; Cornelis, R ; Cosmi, L ; Davey, MS ; De Biasi, S ; De Simone, G ; del Zotto, G ; Delacher, M ; Di Rosa, F ; Di Santo, J ; Diefenbach, A ; Dong, J ; Doerner, T ; Dress, RJ ; Dutertre, C-A ; Eckle, SBG ; Eede, P ; Evrard, M ; Falk, CS ; Feuerer, M ; Fillatreau, S ; Fiz-Lopez, A ; Follo, M ; Foulds, GA ; Froebel, J ; Gagliani, N ; Galletti, G ; Gangaev, A ; Garbi, N ; Garrote, JA ; Geginat, J ; Gherardin, NA ; Gibellini, L ; Ginhoux, F ; Godfrey, DI ; Gruarin, P ; Haftmann, C ; Hansmann, L ; Harpur, CM ; Hayday, AC ; Heine, G ; Hernandez, DC ; Herrmann, M ; Hoelsken, O ; Huang, Q ; Huber, S ; Huber, JE ; Huehn, J ; Hundemer, M ; Hwang, WYK ; Iannacone, M ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Keller, B ; Kessler, N ; Ketelaars, S ; Knop, L ; Knopf, J ; Koay, H-F ; Kobow, K ; Kriegsmann, K ; Kristyanto, H ; Krueger, A ; Kuehne, JF ; Kunze-Schumacher, H ; Kvistborg, P ; Kwok, I ; Latorre, D ; Lenz, D ; Levings, MK ; Lino, AC ; Liotta, F ; Long, HM ; Lugli, E ; MacDonald, KN ; Maggi, L ; Maini, MK ; Mair, F ; Manta, C ; Manz, RA ; Mashreghi, M-F ; Mazzoni, A ; McCluskey, J ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Monin, L ; Moretta, L ; Multhoff, G ; Munoz, LE ; Munoz-Ruiz, M ; Muscate, F ; Natalini, A ; Neumann, K ; Ng, LG ; Niedobitek, A ; Niemz, J ; Almeida, LN ; Notarbartolo, S ; Ostendorf, L ; Pallett, LJ ; Patel, AA ; Percin, GI ; Peruzzi, G ; Pinti, M ; Pockley, AG ; Pracht, K ; Prinz, I ; Pujol-Autonell, I ; Pulvirenti, N ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Rhys, H ; Rodrigo, MB ; Romagnani, C ; Saggau, C ; Sakaguchi, S ; Sallusto, F ; Sanderink, L ; Sandrock, I ; Schauer, C ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schober, K ; Schoen, J ; Schuh, W ; Schueler, T ; Schulz, AR ; Schulz, S ; Schulze, J ; Simonetti, S ; Singh, J ; Sitnik, KM ; Stark, R ; Starossom, S ; Stehle, C ; Szelinski, F ; Tan, L ; Tarnok, A ; Tornack, J ; Tree, TIM ; van Beek, JJP ; van de Veen, W ; van Gisbergen, K ; Vasco, C ; Verheyden, NA ; von Borstel, A ; Ward-Hartstonge, KA ; Warnatz, K ; Waskow, C ; Wiedemann, A ; Wilharm, A ; Wing, J ; Wirz, O ; Wittner, J ; Yang, JHM ; Yang, J (WILEY, 2021-12)
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
  • Item
    Thumbnail Image
    Differential antigenic requirements by diverse MR1-restricted T cells
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-02)
    MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells to probe the MR1 restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumor-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43) and demonstrate competitive inhibition by the MR1 ligand 6-formylpterin. TCR-expressing reporter lines, however, failed to recapitulate the robust tumor specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumor reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restricted αβ TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.
  • Item
    No Preview Available
    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
    Keller, AN ; Eckle, SBG ; Xu, W ; Liu, L ; Hughes, VA ; Mak, JYW ; Meehan, BS ; Pediongco, T ; Birkinshaw, RW ; Chen, Z ; Wang, H ; D'Souza, C ; Kjer-Nielsen, L ; Gherardin, NA ; Godfrey, DI ; Kostenko, L ; Corbett, AJ ; Purcell, AW ; Fairlie, DP ; McCluskey, J ; Rossjohn, J (NATURE PUBLISHING GROUP, 2017-04)
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Acs, A ; Adam, D ; Adam-Klages, S ; Agace, WW ; Aghaeepour, N ; Akdis, M ; Allez, M ; Almeida, LN ; Alvisi, G ; Anderson, G ; Andrae, I ; Annunziato, F ; Anselmo, A ; Bacher, P ; Baldari, CT ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Battistini, L ; Bauer, W ; Baumgart, S ; Baumgarth, N ; Baumjohann, D ; Baying, B ; Bebawy, M ; Becher, B ; Beisker, W ; Benes, V ; Beyaert, R ; Blanco, A ; Boardman, DA ; Bogdan, C ; Borger, JG ; Borsellino, G ; Boulais, PE ; Bradford, JA ; Brenner, D ; Brinkman, RR ; Brooks, AES ; Busch, DH ; Buescher, M ; Bushnell, TP ; Calzetti, F ; Cameron, G ; Cammarata, I ; Cao, X ; Cardell, SL ; Casola, S ; Cassatella, MA ; Cavani, A ; Celada, A ; Chatenoud, L ; Chattopadhyay, PK ; Chow, S ; Christakou, E ; Cicin-Sain, L ; Clerici, M ; Colombo, FS ; Cook, L ; Cooke, A ; Cooper, AM ; Corbett, AJ ; Cosma, A ; Cosmi, L ; Coulie, PG ; Cumano, A ; Cvetkovic, L ; Dang, VD ; Dang-Heine, C ; Davey, MS ; Davies, D ; De Biasi, S ; Del Zotto, G ; Dela Cruz, GV ; Delacher, M ; Della Bella, S ; Dellabona, P ; Deniz, G ; Dessing, M ; Di Santo, JP ; Diefenbach, A ; Dieli, F ; Dolf, A ; Doerner, T ; Dress, RJ ; Dudziak, D ; Dustin, M ; Dutertre, C-A ; Ebner, F ; Eckle, SBG ; Edinger, M ; Eede, P ; Ehrhardt, GRA ; Eich, M ; Engel, P ; Engelhardt, B ; Erdei, A ; Esser, C ; Everts, B ; Evrard, M ; Falk, CS ; Fehniger, TA ; Felipo-Benavent, M ; Ferry, H ; Feuerer, M ; Filby, A ; Filkor, K ; Fillatreau, S ; Follo, M ; Foerster, I ; Foster, J ; Foulds, GA ; Frehse, B ; Frenette, PS ; Frischbutter, S ; Fritzsche, W ; Galbraith, DW ; Gangaev, A ; Garbi, N ; Gaudilliere, B ; Gazzinelli, RT ; Geginat, J ; Gerner, W ; Gherardin, NA ; Ghoreschi, K ; Gibellini, L ; Ginhoux, F ; Goda, K ; Godfrey, DI ; Goettlinger, C ; Gonzalez-Navajas, JM ; Goodyear, CS ; Gori, A ; Grogan, JL ; Grummitt, D ; Gruetzkau, A ; Haftmann, C ; Hahn, J ; Hammad, H ; Haemmerling, G ; Hansmann, L ; Hansson, G ; Harpur, CM ; Hartmann, S ; Hauser, A ; Hauser, AE ; Haviland, DL ; Hedley, D ; Hernandez, DC ; Herrera, G ; Herrmann, M ; Hess, C ; Hoefer, T ; Hoffmann, P ; Hogquist, K ; Holland, T ; Hollt, T ; Holmdahl, R ; Hombrink, P ; Houston, JP ; Hoyer, BF ; Huang, B ; Huang, F-P ; Huber, JE ; Huehn, J ; Hundemer, M ; Hunter, CA ; Hwang, WYK ; Iannone, A ; Ingelfinger, F ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Javega, B ; Jonjic, S ; Kaiser, T ; Kalina, T ; Kamradt, T ; Kaufmann, SHE ; Keller, B ; Ketelaars, SLC ; Khalilnezhad, A ; Khan, S ; Kisielow, J ; Klenerman, P ; Knopf, J ; Koay, H-F ; Kobow, K ; Kolls, JK ; Kong, WT ; Kopf, M ; Korn, T ; Kriegsmann, K ; Kristyanto, H ; Kroneis, T ; Krueger, A ; Kuehne, J ; Kukat, C ; Kunkel, D ; Kunze-Schumacher, H ; Kurosaki, T ; Kurts, C ; Kvistborg, P ; Kwok, I ; Landry, J ; Lantz, O ; Lanuti, P ; LaRosa, F ; Lehuen, A ; LeibundGut-Landmann, S ; Leipold, MD ; Leung, LYT ; Levings, MK ; Lino, AC ; Liotta, F ; Litwin, V ; Liu, Y ; Ljunggren, H-G ; Lohoff, M ; Lombardi, G ; Lopez, L ; Lopez-Botet, M ; Lovett-Racke, AE ; Lubberts, E ; Luche, H ; Ludewig, B ; Lugli, E ; Lunemann, S ; Maecker, HT ; Maggi, L ; Maguire, O ; Mair, F ; Mair, KH ; Mantovani, A ; Manz, RA ; Marshall, AJ ; Martinez-Romero, A ; Martrus, G ; Marventano, I ; Maslinski, W ; Matarese, G ; Mattioli, AV ; Maueroder, C ; Mazzoni, A ; McCluskey, J ; McGrath, M ; McGuire, HM ; McInnes, IB ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Miller, SD ; Mills, KHG ; Minderman, H ; Mjosberg, J ; Moore, J ; Moran, B ; Moretta, L ; Mosmann, TR ; Mueller, S ; Multhoff, G ; Munoz, LE ; Munz, C ; Nakayama, T ; Nasi, M ; Neumann, K ; Ng, LG ; Niedobitek, A ; Nourshargh, S ; Nunez, G ; O'Connor, J-E ; Ochel, A ; Oja, A ; Ordonez, D ; Orfao, A ; Orlowski-Oliver, E ; Ouyang, W ; Oxenius, A ; Palankar, R ; Panse, I ; Pattanapanyasat, K ; Paulsen, M ; Pavlinic, D ; Penter, L ; Peterson, P ; Peth, C ; Petriz, J ; Piancone, F ; Pickl, WF ; Piconese, S ; Pinti, M ; Pockley, AG ; Podolska, MJ ; Poon, Z ; Pracht, K ; Prinz, I ; Pucillo, CEM ; Quataert, SA ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Radstake, TRDJ ; Rahmig, S ; Rahn, H-P ; Rajwa, B ; Ravichandran, G ; Raz, Y ; Rebhahn, JA ; Recktenwald, D ; Reimer, D ; Reis e Sousa, C ; Remmerswaal, EBM ; Richter, L ; Rico, LG ; Riddell, A ; Rieger, AM ; Robinson, JP ; Romagnani, C ; Rubartelli, A ; Ruland, J ; Saalmueller, A ; Saeys, Y ; Saito, T ; Sakaguchi, S ; Sala-de-Oyanguren, F ; Samstag, Y ; Sanderson, S ; Sandrock, I ; Santoni, A ; Sanz, RB ; Saresella, M ; Sautes-Fridman, C ; Sawitzki, B ; Schadt, L ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schimisky, E ; Schlitzer, A ; Schlosser, J ; Schmid, S ; Schmitt, S ; Schober, K ; Schraivogel, D ; Schuh, W ; Schueler, T ; Schulte, R ; Schulz, AR ; Schulz, SR ; Scotta, C ; Scott-Algara, D ; Sester, DP ; Shankey, TV ; Silva-Santos, B ; Simon, AK ; Sitnik, KM ; Sozzani, S ; Speiser, DE ; Spidlen, J ; Stahlberg, A ; Stall, AM ; Stanley, N ; Stark, R ; Stehle, C ; Steinmetz, T ; Stockinger, H ; Takahama, Y ; Takeda, K ; Tan, L ; Tarnok, A ; Tiegs, G ; Toldi, G ; Tornack, J ; Traggiai, E ; Trebak, M ; Tree, TIM ; Trotter, J ; Trowsdale, J ; Tsoumakidou, M ; Ulrich, H ; Urbanczyk, S ; van de Veen, W ; van den Broek, M ; van der Pol, E ; Van Gassen, S ; Van Isterdael, G ; van Lier, RAW ; Veldhoen, M ; Vento-Asturias, S ; Vieira, P ; Voehringer, D ; Volk, H-D ; von Borstel, A ; von Volkmann, K ; Waisman, A ; Walker, RV ; Wallace, PK ; Wang, SA ; Wang, XM ; Ward, MD ; Ward-Hartstonge, KA ; Warnatz, K ; Warnes, G ; Warth, S ; Waskow, C ; Watson, JV ; Watzl, C ; Wegener, L ; Weisenburger, T ; Wiedemann, A ; Wienands, J ; Wilharm, A ; Wilkinson, RJ ; Willimsky, G ; Wing, JB ; Winkelmann, R ; Winkler, TH ; Wirz, OF ; Wong, A ; Wurst, P ; Yang, JHM ; Yang, J ; Yazdanbakhsh, M ; Yu, L ; Yue, A ; Zhang, H ; Zhao, Y ; Ziegler, SM ; Zielinski, C ; Zimmermann, J ; Zychlinsky, A (WILEY, 2019-10)
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  • Item
    Thumbnail Image
    Diverse MR1-restricted T cells in mice and humans.
    Koay, H-F ; Gherardin, NA ; Xu, C ; Seneviratna, R ; Zhao, Z ; Chen, Z ; Fairlie, DP ; McCluskey, J ; Pellicci, DG ; Uldrich, AP ; Godfrey, DI (Nature Research (part of Springer Nature), 2019-05-21)
    Mucosal-associated invariant T (MAIT) cells express an invariant TRAV1/TRAJ33 TCR-α chain and are restricted to the MHC-I-like molecule, MR1. Whether MAIT cell development depends on this invariant TCR-α chain is unclear. Here we generate Traj33-deficient mice and show that they are highly depleted of MAIT cells; however, a residual population remains and can respond to exogenous antigen in vitro or pulmonary Legionella challenge in vivo. These residual cells include some that express Trav1+ TCRs with conservative Traj-gene substitutions, and others that express Trav1- TCRs with a broad range of Traj genes. We further report that human TRAV1-2- MR1-restricted T cells contain both MAIT-like and non-MAIT-like cells, as judged by their TCR repertoire, antigen reactivity and phenotypic features. These include a MAIT-like population that expresses a public, canonical TRAV36+ TRBV28+ TCR. Our findings highlight the TCR diversity and the resulting potential impact on antigen recognition by MR1-restricted T cells.
  • Item
    No Preview Available
    A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
    Koay, H-F ; Gherardin, NA ; Enders, A ; Loh, L ; Mackay, LK ; Almeida, CF ; Russ, BE ; Nold-Petry, CA ; Nold, MF ; Bedoui, S ; Chen, Z ; Corbett, AJ ; Eckle, SBG ; Meehan, B ; d'Udekem, Y ; Konstantinov, IE ; Lappas, M ; Liu, L ; Goodnow, CC ; Fairlie, DP ; Rossjohn, J ; Chong, MM ; Kedzierska, K ; Berzins, SP ; Belz, GT ; McCluskey, J ; Uldrich, AP ; Godfrey, DI ; Pellicci, DG (NATURE PUBLISHING GROUP, 2016-11)
    Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
  • Item
    Thumbnail Image
    Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma
    Gherardin, NA ; Loh, L ; Admojo, L ; Davenport, AJ ; Richardson, K ; Rogers, A ; Darcy, PK ; Jenkins, MR ; Prince, HM ; Harrison, SJ ; Quach, H ; Fairlie, DP ; Kedzierska, K ; McCluskey, J ; Uldrich, AP ; Neeson, PJ ; Ritchie, DS ; Godfrey, DI (NATURE PORTFOLIO, 2018-03-07)
    Mucosal-associated invariant T (MAIT) cells are T cells that recognise vitamin-B derivative Ag presented by the MHC-related-protein 1 (MR1) antigen-presenting molecule. While MAIT cells are highly abundant in humans, their role in tumour immunity remains unknown. Here we have analysed the frequency and function of MAIT cells in multiple myeloma (MM) patients. We show that MAIT cell frequency in blood is reduced compared to healthy adult donors, but comparable to elderly healthy control donors. Furthermore, there was no evidence that MAIT cells accumulated at the disease site (bone marrow) of these patients. Newly diagnosed MM patient MAIT cells had reduced IFNγ production and CD27 expression, suggesting an exhausted phenotype, although IFNγ-producing capacity is restored in relapsed/refractory patient samples. Moreover, immunomodulatory drugs Lenalidomide and Pomalidomide, indirectly inhibited MAIT cell activation. We further show that cell lines can be pulsed with vitamin-B derivative Ags and that these can be presented via MR1 to MAIT cells in vitro, to induce cytotoxic activity comparable to that of natural killer (NK) cells. Thus, MAIT cells are reduced in MM patients, which may contribute to disease in these individuals, and moreover, MAIT cells may represent new immunotherapeutic targets for treatment of MM and other malignancies.