Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Identifying regions of importance in wall-bounded turbulence through explainable deep learning
    Cremades, A ; Hoyas, S ; Deshpande, R ; Quintero, P ; Lellep, M ; Lee, WJ ; Monty, JP ; Hutchins, N ; Linkmann, M ; Marusic, I ; Vinuesa, R (NATURE PORTFOLIO, 2024-05-13)
    Despite its great scientific and technological importance, wall-bounded turbulence is an unresolved problem in classical physics that requires new perspectives to be tackled. One of the key strategies has been to study interactions among the energy-containing coherent structures in the flow. Such interactions are explored in this study using an explainable deep-learning method. The instantaneous velocity field obtained from a turbulent channel flow simulation is used to predict the velocity field in time through a U-net architecture. Based on the predicted flow, we assess the importance of each structure for this prediction using the game-theoretic algorithm of SHapley Additive exPlanations (SHAP). This work provides results in agreement with previous observations in the literature and extends them by revealing that the most important structures in the flow are not necessarily the ones with the highest contribution to the Reynolds shear stress. We also apply the method to an experimental database, where we can identify structures based on their importance score. This framework has the potential to shed light on numerous fundamental phenomena of wall-bounded turbulence, including novel strategies for flow control.
  • Item
    No Preview Available
    Near-Wall Flow Statistics in High-Reτ Drag-Reduced Turbulent Boundary Layers
    Deshpande, R ; Zampiron, A ; Chandran, D ; Smits, AJ ; Marusic, I (SPRINGER, 2024-06)
  • Item
    Thumbnail Image
    Pressure drag reduction via imposition of spanwise wall oscillations on a rough wall
    Deshpande, R ; Kidanemariam, AG ; Marusic, I (Cambridge University Press, 2024-01-11)
    The present study tests the efficacy of the well-known viscous drag reduction strategy of imposing spanwise wall oscillations to reduce pressure drag contributions in transitional and fully rough turbulent wall flow. This is achieved by conducting a series of direct numerical simulations of a turbulent flow over two-dimensional (spanwise-aligned) semi-cylindrical rods, placed periodically along the streamwise direction with varying streamwise spacing. Surface oscillations, imposed at fixed viscous-scaled actuation parameters optimum for smooth wall drag reduction, are found to yield substantial drag reduction ( $\gtrsim$ 25 %) for all the rough wall cases, maintained at matched roughness Reynolds numbers. While the total drag reduction is due to a drop in both viscous and pressure drag in the case of transitionally rough flow (i.e. with large inter-rod spacing), it is associated solely with pressure drag reduction for the fully rough cases (i.e. with small inter-rod spacing), with the latter being reported for the first time. The study finds that pressure drag reduction in all cases is caused by the attenuation of the vortex shedding activity in the roughness wake, in response to wall oscillation frequencies that are of the same order as the vortex shedding frequencies. Contrary to speculations in the literature, this study confirms that the mechanism behind pressure drag reduction, achieved via imposition of spanwise oscillations, is independent of the viscous drag reduction. This mechanism is responsible for weakening of the Reynolds stresses and increase in base pressure in the roughness wake, explaining the pressure drag reduction observed by past studies, across varying roughness heights and geometries.
  • Item
    Thumbnail Image
    On the relationship between manipulated inter-scale phase and energy-efficient turbulent drag reduction
    Deshpande, R ; Chandran, D ; Smits, AJ ; Marusic, I (CAMBRIDGE UNIV PRESS, 2023-09-26)
    We investigate the role of inter-scale interactions in the high-Reynolds-number skin-friction drag reduction strategy reported by Marusic et al. (Nat. Commun., vol. 12, 2021). The strategy involves imposing relatively low-frequency streamwise travelling waves of spanwise velocity at the wall to actuate the drag generating outer scales. This approach has proven to be more energy efficient than the conventional method of directly targeting the drag producing inner scales, which typically requires actuation at higher frequencies. Notably, it is observed that actuating the outer scales at low frequencies leads to a substantial attenuation of the major drag producing inner scales, suggesting that the actuations affect the nonlinear inner–outer coupling inherently existing in wall-bounded flows. In the present study, we find that increased drag reduction, through imposition of spanwise wall oscillations, is always associated with an increased coupling between the inner and outer scales. This enhanced coupling emerges through manipulation of the phase relationships between these triadically linked scales, with the actuation forcing the entire range of energy-containing scales, from the inner (viscous) to the outer (inertial) scales, to be more in phase. We also find that a similar enhancement of this nonlinear coupling, via manipulation of the inter-scale phase relationships, occurs with increasing Reynolds number for canonical turbulent boundary layers. This indicates improved efficacy of the energy-efficient drag reduction strategy at very high Reynolds numbers, where the energised outer scales are known to more strongly superimpose and modulate the inner scales. Leveraging the inter-scale interactions, therefore, offers a plausible mechanism for achieving energy-efficient drag reduction at high Reynolds numbers.
  • Item
    Thumbnail Image
    Evidence that superstructures comprise self-similar coherent motions in high Reynolds number boundary layers
    Deshpande, R ; de Silva, CM ; Marusic, I (Cambridge University Press, 2023-08-11)
    We present experimental evidence that the superstructures in turbulent boundary layers comprise smaller, geometrically self-similar coherent motions. The evidence comes from identifying and analysing instantaneous superstructures from large-scale particle image velocimetry datasets acquired at high Reynolds numbers, capable of capturing streamwise elongated motions extending up to 12 times the boundary layer thickness. Given the challenge in identifying the constituent motions of the superstructures based on streamwise velocity signatures, a new approach is adopted that analyses the wall-normal velocity fluctuations within these very long motions, which reveals the constituent motions unambiguously. The conditional streamwise energy spectra of the Reynolds shear stress and the wall-normal fluctuations, corresponding exclusively to the superstructure region, are found to exhibit the well-known distance-from-the-wall scaling in the intermediate-scale range. It suggests that geometrically self-similar motions are the constituent motions of these very-large-scale structures. Investigation of the spatial organization of the wall-normal momentum-carrying eddies, within the superstructures, also lends empirical support to the concatenation hypothesis for the formation of these structures. The association between the superstructures and self-similar motions is reaffirmed on comparing the vertical coherence of the Reynolds-shear-stress-carrying motions, by computing conditionally averaged two-point correlations, which are found to match with the mean correlations. The mean vertical coherence of these motions, investigated for the log region across three decades of Reynolds numbers, exhibits a unique distance-from-the-wall scaling invariant with Reynolds number. The findings support modelling of these dynamically significant motions via data-driven coherent structure-based models.