Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 139
  • Item
    Thumbnail Image
    The use of microarray technology for the analysis of Streptococcus pneumoniae
    McCluskey, J ; Dowson, CG ; Mitchell, TJ (JOHN WILEY & SONS LTD, 2002-08)
    Streptococcus pneumoniae is an important human pathogen associated with pneumonia, septicaemia, meningitis and otitis media. It is estimated to result in over 3 million child deaths worldwide every year and an even greater number of deaths among the elderly. Prior to the complete sequencing of the genomes of S. pneumoniae TIGR4 (serotype 4) and S. pneumoniae R6 (serotype 2), we designed a custom miniarray consisting of 497 pneumococcal genes. The overall objectives of our microarray investigations were, first, to assess the genetic diversity between different S. pneumoniae serotypes, clinical isolates and also different Streptococcus species; second, we aimed to use microarray technology to examine the mechanisms by which environmental factors influence pneumococcal gene expression, and ultimately to further the understanding of how these changes in gene expression are achieved and how they may alter the virulence of the organism.
  • Item
    Thumbnail Image
    A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions
    Slack, C ; Somers, WG ; Sousa-Nunes, R ; Chia, W ; Overton, PM (BIOMED CENTRAL LTD, 2006-06-02)
    BACKGROUND: The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division. RESULTS: We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes. CONCLUSION: We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division.
  • Item
    Thumbnail Image
    The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation
    Tynan, FE ; Elhassen, D ; Purcell, AW ; Burrows, JM ; Borg, NA ; Miles, JJ ; Williamson, NA ; Green, KJ ; Tellam, J ; Kjer-Nielsen, L ; McCluskey, J ; Rossjohn, J ; Burrows, SR (ROCKEFELLER UNIV PRESS, 2005-11-07)
    Thousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8(+) T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope ((77)APQPAPENAY(86)) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 ((156)Leucine vs. (156)Arginine, respectively). Surprisingly, only individuals expressing HLA-B*3508 show evidence of a CTL response to the (77)APQPAPENAY(86) epitope even though EBV-infected cells expressing HLA-B*3501 process and present similar amounts of peptide for CTL recognition, suggesting that factors other than peptide presentation levels are influencing immunogenicity. Functional and structural analysis revealed marked conformational differences in the peptide, when bound to each HLA-B35 allotype, that are dictated by the polymorphic HLA residue 156 and that directly affected T cell receptor recognition. These data indicate that the immunogenicity of an antigenic peptide is influenced not only by how well the peptide binds to major histocompatibility complex (MHC) molecules but also by its bound conformation. It also illustrates a novel mechanism through which MHC polymorphism can further diversify the immune response to infecting pathogens.
  • Item
    Thumbnail Image
    CHANGES AT PEPTIDE RESIDUES BURIED IN THE MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) CLASS-I BINDING CLEFT INFLUENCE T-CELL RECOGNITION - A POSSIBLE ROLE FOR INDIRECT CONFORMATIONAL ALTERATIONS IN THE MHC CLASS-I OR BOUND PEPTIDE IN DETERMINING T-CELL RECOGNITION
    CHEN, W ; MCCLUSKEY, J ; RODDA, S ; CARBONE, FR (ROCKEFELLER UNIV PRESS, 1993-03-01)
    Recent crystallographic studies on two peptide complexes with the mouse Kb molecule have shown that peptide binding appears to alter the conformation of the class I alpha-helical regions that flank the antigen binding cleft. Given that this study also showed that much of the foreign peptide is buried within the class I binding cleft with only a small portion accessible for direct interaction with the components of the T cell receptor, this finding suggests that at least some component of T cell specificity may arise as a consequence of peptide-induced conformational changes in the class I structure. To assess this possibility, we have made systematic substitutions at residues within the Kb-restricted determinant from ovalbumin (OVA257-264) that are thought to be buried on binding to the class I molecule. We have found that changes in this determinant at the completely buried second residue (P2) can influence T cell recognition without affecting binding to Kb, suggesting that the substitutions may indirectly determine T cell recognition by altering the conformation of the class I molecule or the bound peptide.
  • Item
    Thumbnail Image
    Vaccine potential of attenuated mutants of Corynebacterium pseudotuberculosis in sheep
    Simmons, CP ; Dunstan, SJ ; Tachedjian, M ; Krywult, J ; Hodgson, ALM ; Strugnell, RA (AMER SOC MICROBIOLOGY, 1998-02)
    Corynebacterium pseudotuberculosis, a gram-positive facultative intracellular bacterial pathogen, is the etiological agent of the economically important disease caseous lymphadenitis (CLA) in both sheep and goats. Attenuated mutants of C. pseudotuberculosis have the potential to act as novel vaccines against CLA and as veterinary vaccine vectors. In this report, we have assessed the virulence of both aroQ and pld mutants of C. pseudotuberculosis in sheep and concurrently their capacity to act as vaccines against homologous challenge. The results suggest that aroQ mutants of C. pseudotuberculosis are attenuated with regard to both lymph node persistence and vaccination site reactogenicity. Immunologically, aroQ mutants failed to elicit detectable specific gamma interferon (IFN-gamma)-secreting lymphocytes and induced low levels of antibodies to C. pseudotuberculosis culture supernatant antigens. Following subcutaneous vaccination, the immune responses induced by aroQ mutants did not protect sheep from infection with the wild-type strain but did appear to reduce the clinical severity of disease resulting from challenge. Conversely, an attenuated C. pseudotuberculosis strain expressing an enzymatically inactive phospholipase D exotoxin, when used as a vaccine, elicited a protective immune response. Protection appeared to correlate with in vivo persistence of the vaccine strain, the induction of IFN-gamma-secreting lymphocytes, and relatively high levels of antibodies to culture supernatant antigens. The results suggest that aroQ mutants of C. pseudotuberculosis may be overly attenuated for use as a CLA vaccines or as vaccine vectors.
  • Item
    Thumbnail Image
    Dual role for macrophages in vivo in pathogenesis and control of murine Salmonella enterica var. Typhimurium infections.
    Wijburg, OL ; Simmons, CP ; van Rooijen, N ; Strugnell, RA (Wiley, 2000-03)
    Salmonella spp. are regarded as facultative intracellular bacterial pathogens which are found inside macrophages (Mphi) after i. v. infection. It is generally assumed that Mphi restrict the replication of the bacteria during infection. In this study we examined the in vivo activities of Mphi during experimental S. typhimurium infections, using a selective liposome-based Mphi elimination technique. Unexpectedly, elimination of Mphi prior to infection with virulent S. typhimurium decreased morbidity and mortality, suggesting that Mphi mediate the pathology caused by S. typhimurium. Removal of Mphi) during vaccination with attenuated S. typhimurium did not affect protection against challenge with virulent S. typhimurium, suggesting that Mphi are not required for the induction of protective immunity and that other cells must function as antigen-presenting cell to elicit T cell-mediated protection. However, Mphi appeared to be important effectors of protection against challenge infection since elimination of Mphi from vaccinated mice prior to challenge infection with virulent S. typhimurium significantly decreased protection. These results enhance our understanding of the control of S. typhimurium growth in vivo, and moreover suggest that Mphi play a major role in the pathology of virulent S. typhimurium infections. As such, these cells may present a novel target for therapeutic intervention.
  • Item
    Thumbnail Image
    Attenuation and vaccine potential of aroQ mutants of Corynebacterium pseudotuberculosis
    Simmons, CP ; Hodgson, ALM ; Strugnell, RA (AMER SOC MICROBIOLOGY, 1997-08)
    Corynebacterium pseudotuberculosis, a gram-positive intracellular bacterial pathogen, is the etiological agent of the disease caseous lymphadenitis (CLA) in both sheep and goats. Attenuated mutants of C. pseudotuberculosis have the potential to act as novel live veterinary vaccine vectors. We have cloned and sequenced the aroB and aroQ genes from C. pseudotuberculosis C231. By allelic exchange, aroQ mutants of both C231, designated CS100, and a pld mutant strain TB521, designated CS200, were constructed. Infection of BALB/c mice indicated that introduction of the aroQ mutation into C231 and TB521 attenuated both strains. In sublethally infected BALB/c mice, both CS100 and CS200 were cleared from spleens and livers by day 8 postinfection. The in vivo persistence of these strains was increased when the intact aroQ gene was supplied on a plasmid in trans. Mice infected with TB521 harbored bacteria in organs at least till day 8 postinfection without ill effect. When used as a vaccine, only the maximum tolerated dose of CS100 had the capacity to protect mice from homologous challenge. Vaccination with TB521 also elicited protective immunity, and this was associated with gamma interferon (IFN-gamma) production from splenocytes stimulated 7 days postvaccination. The role of IFN-gamma in controlling primary infections with C. pseudotuberculosis was examined in mice deficient for the IFN-gamma receptor (IFN-gammaR(-/-) mice). IFN-gammaR(-/-) mice cleared an infection with CS100 but were significantly more susceptible than control littermates to infection with C231 or TB521. These studies support an important role for IFN-gamma in control of primary C. pseudotuberculosis infections and indicate that aroQ mutants remain attenuated even in immunocompromised animals. This is the first report of an aroQ mutant of a bacterial pathogen, and the results may have implications for the construction of aromatic mutants of Mycobacterium tuberculosis for use as vaccines.
  • Item
    Thumbnail Image
    DNA vaccines for bacterial infections
    Strugnell, RA ; Drew, D ; Mercieca, J ; DiNatale, S ; Firez, N ; Dunstan, SJ ; Simmons, CP ; Vadolas, J (BLACKWELL SCIENCE, 1997-08)
    DNA vaccines are an exciting development in vaccine technology which may have a special role in preventing viral infections and as 'theracines' for cancer. Their use in preventing bacterial infections has, by comparison, been less well documented. While it is unlikely that traditional, highly successful and cheap vaccines for diseases such as diphtheria will be replaced by DNA vaccines, naked DNA may be particularly appropriate for preventing bacterial infections where cytotoxic T cells confer protection, or where a Th1 type T cell response mediates resistance. For example, DNA vaccines containing different mycobacterial antigens have been shown to inhibit overt infections by Mycobacterium tuberculosis in rodent models. The use of DNA vaccines in bacterial infections may be complicated by fundamental differences between prokaryotic and eukaryotic genes and gene products, including mRNA stability, codon bias, secondary structures surrounding native start sequences and glycosylation. These problems can be solved by re-synthesis of bacterial genes to produce 'new' sequences which are more highly expressed by eukaryotic cells.
  • Item
    Thumbnail Image
    Cloning and manipulation of the Corynebacterium pseudotuberculosis recA gene for live vaccine vector development
    Pogson, CA ; Simmons, CP ; Strugnell, RA ; Hodgson, ALM (OXFORD UNIV PRESS, 1996-09-01)
    Corynebacterium pseudotuberculosis is an intracellular bacterial pathogen causing a chronic abscessing disease in sheep and goats called caseous lymphadenitis. We are developing this bacterial species as a live vector system to deliver vaccine antigens to the animal immune system. Foreign genes expressed in bacterial hosts can be unstable so we undertook to delete the C. pseudotuberculosis chromosomal recA gene to determine whether a recA- background would reduce the frequency of recombination in cloned DNA. Homologous DNA recombination within an isogenic recA- C. pseudotuberculosis was 10-12-fold lower than that in the recA+ parental strain. Importantly, the recA mutation had no detectable affect upon the virulence of C. pseudotuberculosis in a mouse model. Taken together these results suggest that a recA- background may be useful in the further development of C. pseudotuberculosis as a vaccine vector.
  • Item
    Thumbnail Image
    Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. typhimurium
    Dunstan, SJ ; Simmons, CP ; Strugnell, RA ; Burns, DL (AMER SOC MICROBIOLOGY, 1999-10)
    This study describes the construction and analysis of three in vivo-inducible promoter expression plasmids, containing pnirB, ppagC, and pkatG, for the delivery of foreign antigens in the DeltaaroAD mutant of Salmonella enterica var. Typhimurium (hereafter referred to as S. typhimurium). The reporter genes encoding beta-galactosidase and firefly luciferase were used to assess the comparative levels of promoter activity in S. typhimurium in vitro in response to different induction stimuli and in vivo in immunized mice. It was determined that the ppagC construct directed the expression of more beta-galactosidase and luciferase in S. typhimurium than the pnirB and pkatG constructs, both in vitro and in vivo. The gene encoding the C fragment of tetanus toxin was expressed in the aroAD mutant of S. typhimurium (BRD509) under the control of the three promoters. Mice orally immunized with attenuated S. typhimurium expressing C fragment under control of the pagC promoter [BRD509(pKK/ppagC/C frag)] mounted the highest tetanus toxoid-specific serum antibody response. Levels of luciferase expression in vivo and C-fragment expression in vitro from the pagC promoter appeared to be equivalent to if not lower than the levels of expression detected with the constitutive trc promoter. However, mice immunized with BRD509(pKK/ppagC/C frag) induced significantly higher levels of tetanus toxoid-specific antibody than BRD509(pKK/C frag)-immunized mice, suggesting that the specific location of foreign antigen expression may be important for immunogenicity. Mutagenesis of the ribosome binding sites (RBS) in the three promoter/C fragment expression plasmids was also performed. Despite optimization of the RBS in the three different promoter elements, the expression levels in vivo and overall immunogenicity of C fragment when delivered to mice by attenuated S. typhimurium were not affected. These studies suggest that in vivo-inducible promoters may give rise to enhanced immunogenicity and increase the efficacy of S. typhimurium as a vaccine vector.