Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 123
  • Item
  • Item
    Thumbnail Image
    Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine.
    Bellgard, MI ; Wanchanthuek, P ; La, T ; Ryan, K ; Moolhuijzen, P ; Albertyn, Z ; Shaban, B ; Motro, Y ; Dunn, DS ; Schibeci, D ; Hunter, A ; Barrero, R ; Phillips, ND ; Hampson, DJ ; Ahmed, N (Public Library of Science (PLoS), 2009)
    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.
  • Item
    Thumbnail Image
    BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
    Kuo, C-J ; Ling, MHT ; Lin, K-T ; Hsu, C-N (BMC, 2009)
    BACKGROUND: To automatically process large quantities of biological literature for knowledge discovery and information curation, text mining tools are becoming essential. Abbreviation recognition is related to NER and can be considered as a pair recognition task of a terminology and its corresponding abbreviation from free text. The successful identification of abbreviation and its corresponding definition is not only a prerequisite to index terms of text databases to produce articles of related interests, but also a building block to improve existing gene mention tagging and gene normalization tools. RESULTS: Our approach to abbreviation recognition (AR) is based on machine-learning, which exploits a novel set of rich features to learn rules from training data. Tested on the AB3P corpus, our system demonstrated a F-score of 89.90% with 95.86% precision at 84.64% recall, higher than the result achieved by the existing best AR performance system. We also annotated a new corpus of 1200 PubMed abstracts which was derived from BioCreative II gene normalization corpus. On our annotated corpus, our system achieved a F-score of 86.20% with 93.52% precision at 79.95% recall, which also outperforms all tested systems. CONCLUSION: By applying our system to extract all short form-long form pairs from all available PubMed abstracts, we have constructed BIOADI. Mining BIOADI reveals many interesting trends of bio-medical research. Besides, we also provide an off-line AR software in the download section on http://bioagent.iis.sinica.edu.tw/BIOADI/.
  • Item
    Thumbnail Image
    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition
    Archbold, JK ; Macdonald, WA ; Gras, S ; Ely, LK ; Miles, JJ ; Bell, MJ ; Brennan, RM ; Beddoe, T ; Wilce, MCJ ; Clements, CS ; Purcell, AW ; McCluskey, J ; Burrows, SR ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2009-01-16)
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405(EENLLDFVRF) complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.
  • Item
    Thumbnail Image
    A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions
    Slack, C ; Somers, WG ; Sousa-Nunes, R ; Chia, W ; Overton, PM (BIOMED CENTRAL LTD, 2006-06-02)
    BACKGROUND: The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division. RESULTS: We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes. CONCLUSION: We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division.
  • Item
    Thumbnail Image
    Drosophila neuroblast asymmetric divisions:: cell cycle regulators, asymmetric protein localization, and tumorigenesis
    Chia, W ; Somers, WG ; Wang, H (ROCKEFELLER UNIV PRESS, 2008-01-28)
    Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus differentiation decision and appear to function as tumor suppressors during larval nervous system development. In this paper, we highlight the growing number of molecules that are normally considered to be key regulators of cell cycle events/progression that have recently been shown to impinge on the neuroblast asymmetric division machinery to control asymmetric protein localization and/or the decision to self-renew or differentiate.
  • Item
    Thumbnail Image
    Protein Folding Database (PFD 2.0): an online environment for the International Foldeomics Consortium
    Fulton, KF ; Bate, MA ; Faux, NG ; Mahmood, K ; Betts, C ; Buckle, AM (OXFORD UNIV PRESS, 2007-01)
    The Protein Folding Database (PFD) is a publicly accessible repository of thermodynamic and kinetic protein folding data. Here we describe the first major revision of this work, featuring extensive restructuring that conforms to standards set out by the recently formed International Foldeomics Consortium. The database now adopts standards for data acquisition, analysis and reporting proposed by the consortium, which will facilitate the comparison of folding rates, energies and structure across diverse sets of proteins. Data can now be easily deposited using a rich set of deposition tools. Enhanced search tools allow sophisticated searching and graphical data analysis affords simple data analysis online. PFD can be accessed freely at http://www.foldeomics.org/pfd/.
  • Item
    Thumbnail Image
    A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR
    Wun, KS ; Borg, NA ; Kjer-Nielsen, L ; Beddoe, T ; Koh, R ; Richardson, SK ; Thakur, M ; Howell, AR ; Scott-Browne, JP ; Gapin, L ; Godfrey, DI ; McCluskey, J ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2008-04-14)
    Although it has been established how CD1 binds a variety of lipid antigens (Ag), data are only now emerging that show how alphabeta T cell receptors (TCRs) interact with CD1-Ag. Using the structure of the human semiinvariant NKT TCR-CD1d-alpha-galactosylceramide (alpha-GalCer) complex as a guide, we undertook an alanine scanning mutagenesis approach to define the energetic basis of this interaction between the NKT TCR and CD1d. Moreover, we explored how analogues of alpha-GalCer affected this interaction. The data revealed that an identical energetic footprint underpinned the human and mouse NKT TCR-CD1d-alpha-GalCer cross-reactivity. Some, but not all, of the contact residues within the Jalpha18-encoded invariant CDR3alpha loop and Vbeta11-encoded CDR2beta loop were critical for recognizing CD1d. The residues within the Valpha24-encoded CDR1alpha and CDR3alpha loops that contacted the glycolipid Ag played a smaller energetic role compared with the NKT TCR residues that contacted CD1d. Collectively, our data reveal that the region distant to the protruding Ag and directly above the F' pocket of CD1d was the principal factor in the interaction with the NKT TCR. Accordingly, although the structural footprint at the NKT TCR-CD1d-alpha-GalCer is small, the energetic footprint is smaller still, and reveals the minimal requirements for CD1d restriction.
  • Item
    Thumbnail Image
    Equitable pedagogical spaces: teaching and learning environments that support personalisation of the learning experience
    Cleveland, B (The Australasian Journal of Philosophy in Education, 2009)
    This paper introduces the concept of equitable pedagogical spaces and discusses the potential educational gains that may result from the creation of physical learning environments that are designed to facilitate equity of instruction. Incorporating Monahan's concept of 'built pedagogy', and informed by work in constructivist educational theory by Dewey, Gardiner, Vygotsky, Friere and Bruner, the paper explores the potential for 'space' to play a significant role in supporting the authentic personalisation of student learning in schools.
  • Item
    Thumbnail Image
    Health status and labour force participation: evidence from Australia
    Cai, LX ; Kalb, G (JOHN WILEY & SONS LTD, 2006-03)
    This paper examines the effect of health on labour force participation using the Household, Income and Labour Dynamics in Australia (HILDA) Survey. The potential endogeneity of health, especially self-assessed health, in the labour force participation equation is addressed by estimating the health equation and the labour force participation equation simultaneously. Taking into account the correlation between the error terms in the two equations, the estimation is conducted separately for males aged 15-49, males aged 50-64, females aged 15-49 and females aged 50-60. The results indicate that better health increases the probability of labour force participation for all four groups. However, the effect is larger for the older groups and for women. As for the feedback effect, it is found that labour force participation has a significant positive impact on older females' health, and a significant negative effect on younger males' health. For younger females and older males, the impact of labour force participation on health is not significant. The null-hypothesis of exogeneity of health to labour force participation is rejected for all groups.