Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    No Preview Available
    Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation
    Suliman, S ; Kjer-Nielsen, L ; Iwany, SK ; Tamara, KL ; Loh, L ; Grzelak, L ; Kedzierska, K ; Ocampo, TA ; Corbett, AJ ; McCluskey, J ; Rossjohn, J ; Leon, SR ; Calderon, R ; Lecca-Garcia, L ; Murray, MB ; Moody, DB ; Van Rhijn, I (AMER ASSOC IMMUNOLOGISTS, 2022-03-15)
    Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRβ-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRβ-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous β-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.
  • Item
    Thumbnail Image
    IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection
    Wang, H ; Kjer-Nielsen, L ; Shi, M ; D'Souza, C ; Pediongco, TJ ; Cao, H ; Kostenko, L ; Lim, XY ; Eckle, SBG ; Meehan, BS ; Zhu, T ; Wang, B ; Zhao, Z ; Mak, JYW ; Fairlie, DP ; Teng, MWL ; Rossjohn, J ; Yu, D ; de St Groth, BF ; Lovrecz, G ; Lu, L ; McCluskey, J ; Strugnell, RA ; Corbett, AJ ; Chen, Z (AMER ASSOC ADVANCEMENT SCIENCE, 2019-11-01)
    Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow–derived APCs or non–bone marrow–derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell–mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
  • Item
    No Preview Available
    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
    Keller, AN ; Eckle, SBG ; Xu, W ; Liu, L ; Hughes, VA ; Mak, JYW ; Meehan, BS ; Pediongco, T ; Birkinshaw, RW ; Chen, Z ; Wang, H ; D'Souza, C ; Kjer-Nielsen, L ; Gherardin, NA ; Godfrey, DI ; Kostenko, L ; Corbett, AJ ; Purcell, AW ; Fairlie, DP ; McCluskey, J ; Rossjohn, J (NATURE PUBLISHING GROUP, 2017-04)
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • Item
    Thumbnail Image
    Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection
    Zhao, Z ; Wang, H ; Shi, M ; Zhu, T ; Pediongco, T ; Lim, XY ; Meehan, BS ; Nelson, AG ; Fairlie, DP ; Mak, JYW ; Eckle, SBG ; Moreira, MDL ; Tumpach, C ; Bramhall, M ; Williams, CG ; Lee, HJ ; Haque, A ; Evrard, M ; Rossjohn, J ; McCluskey, J ; Corbett, AJ ; Chen, Z (NATURE PORTFOLIO, 2021-07-16)
    Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.
  • Item
    Thumbnail Image
    An overview on the identification of MAIT cell antigens
    Kjer-Nielsen, L ; Corbett, AJ ; Chen, Z ; Liu, L ; Mak, JYW ; Godfrey, DI ; Rossjohn, J ; Fairlie, DP ; McCluskey, J ; Eckle, SBG (WILEY, 2018-07)
    Mucosal associated invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and small molecule chemistry, we discovered MR1 ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T-cell receptors, and here we recount this discovery.
  • Item
    Thumbnail Image
    Mucosal-associated invariant T cell receptor recognition of small molecules presented by MR1
    Awad, W ; Le Nours, J ; Kjer-Nielsen, L ; McCluskey, J ; Rossjohn, J (WILEY, 2018-07)
    The major histocompatibility complex (MHC) class-I related molecule MR1 is a monomorphic and evolutionary conserved antigen (Ag)-presenting molecule that shares the overall architecture of MHC-I and CD1 proteins. However, in contrast to MHC-I and the CD1 family that present peptides and lipids, respectively, MR1 specifically presents small organic molecules. During microbial infection of mammalian cells, MR1 captures and presents vitamin B precursors, derived from the microbial biosynthesis of riboflavin, on the surface of antigen-presenting cells. These MR1-Ag complexes are recognized by the mucosal-associated invariant T cell receptor (MAIT TCR), which subsequently leads to MAIT cell activation. Recently, MR1 was shown to trap chemical scaffolds including drug and drug-like molecules. Here, we review this metabolite Ag-presenting molecule and further define the key molecular interactions underlying the recognition and reactivity of MAIT TCRs to MR1 in an Ag-dependent manner.
  • Item
    No Preview Available
    Genome-wide CRISPR-Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1
    Crowther, MD ; Dotlon, G ; Legut, M ; Caillaud, ME ; Lloyd, A ; Attaf, M ; Galloway, SAE ; Rius, C ; Farrell, CP ; Szomolay, B ; Ager, A ; Parker, AL ; Fuller, A ; Donia, M ; McCluskey, J ; Rossjohn, J ; Svane, IM ; Phillips, JD ; Sewell, AK (NATURE PORTFOLIO, 2020-02)
    Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading. Furthermore, concentration-dependent addition of vitamin B-related metabolite ligands of MR1 reduced TCR recognition of cancer cells, suggesting that recognition occurred via sensing of the cancer metabolome. An MR1-restricted T cell clone mediated in vivo regression of leukemia and conferred enhanced survival of NSG mice. TCR transfer to T cells of patients enabled killing of autologous and nonautologous melanoma. These findings offer opportunities for HLA-independent, pan-cancer, pan-population immunotherapies.
  • Item
    Thumbnail Image
    Virus-Mediated Suppression of the Antigen Presentation Molecule MR1
    McSharry, BP ; Samer, C ; McWilliam, HEG ; Ashley, CL ; Yee, MB ; Steain, M ; Liu, L ; Fairlie, DP ; Kinchington, PR ; McCluskey, J ; Abendroth, A ; Villadangos, JA ; Rossjohn, J ; Slobedman, B (CELL PRESS, 2020-03-03)
    The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.
  • Item
    Thumbnail Image
    Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity
    Toubal, A ; Kiaf, B ; Beaudoin, L ; Cagninacci, L ; Rhimi, M ; Fruchet, B ; da Silva, J ; Corbett, AJ ; Simoni, Y ; Lantz, O ; Rossjohn, J ; McCluskey, J ; Lesnik, P ; Maguin, E ; Lehuen, A (NATURE PORTFOLIO, 2020-07-24)
    Obesity is associated with low-grade chronic inflammation promoting insulin-resistance and diabetes. Gut microbiota dysbiosis is a consequence as well as a driver of obesity and diabetes. Mucosal-associated invariant T cells (MAIT) are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting bacterial ligands. Here we show that during obesity MAIT cells promote inflammation in both adipose tissue and ileum, leading to insulin resistance and impaired glucose and lipid metabolism. MAIT cells act in adipose tissue by inducing M1 macrophage polarization in an MR1-dependent manner and in the gut by inducing microbiota dysbiosis and loss of gut integrity. Both MAIT cell-induced tissue alterations contribute to metabolic dysfunction. Treatment with MAIT cell inhibitory ligand demonstrates its potential as a strategy against inflammation, dysbiosis and metabolic disorders.
  • Item
    Thumbnail Image
    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition
    Archbold, JK ; Macdonald, WA ; Gras, S ; Ely, LK ; Miles, JJ ; Bell, MJ ; Brennan, RM ; Beddoe, T ; Wilce, MCJ ; Clements, CS ; Purcell, AW ; McCluskey, J ; Burrows, SR ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2009-01-16)
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405(EENLLDFVRF) complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.