Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Optic nerve tissue displacement during mild intraocular pressure elevation: its relationship to central corneal thickness and corneal hysteresis
    Bedggood, P ; Tanabe, F ; McKendrick, AM ; Turpin, A ; Anderson, AJ ; Bui, BV (WILEY, 2018-07)
    PURPOSE: To determine the extent to which (1) optic nerve tissue is displaced following mild acute elevation of intraocular pressure, and (2) clinically accessible measures at the anterior eye can be used as a surrogate for such displacements. METHODS: We imaged the optic disc of 21 healthy subjects before and after intraocular pressure (IOP) elevation of ~10 mmHg delivered by ophthalmodynamometry. Steady-state tissue displacement during IOP elevation was assessed axially from OCT data, and laterally from SLO data. Recovery from IOP elevation was assessed by tracking a single vertical B-scan through the cup centre. Anatomical structures were demarcated by three masked clinicians to determine lateral shifts for temporal cup edge and central disc vessels, and axial shifts of disc surface and anterior lamina cribrosa. Spatial maps of deformation were constructed within the demarcated cup and disc to assess within-tissue displacement. Measured displacements were correlated with corneal hysteresis, corneal thickness, and IOP. RESULTS: The temporal cup edge moved more temporally with higher baseline IOP (R2  = 0.33, p = 0.006) and with lesser elevation of IOP (R2  = 0.43, p = 0.001); it moved more superiorly for thinner corneas (R2  = 0.35, p = 0.007). Thinner corneas also produced less within-cup deformation, relative to that of the disc (R2  = 0.39, p = 0.004). Axial displacement of the lamina and lateral displacement of vessels were often substantial (lamina 20 ± 15 μm, range 1-60 μm; vessels 37 ± 25 μm, range 2-102 μm) but did not correlate with measured parameters. Recovery from IOP elevation did not take more than 300-400 ms in any subject. CONCLUSIONS: Mild acute elevation of IOP produces large and rapidly reversible shifts in optic nerve tissue in young, healthy eyes. The resulting degree, direction and spatial distribution of cup movement are associated with IOP status and corneal thickness, but not corneal hysteresis.
  • Item
    Thumbnail Image
    Do Intense Perimetric Stimuli Saturate the Healthy Visual System?
    Anderson, AJ ; McKendrick, AM ; Turpin, A (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-11)
    PURPOSE: A recent proposal for why glaucomatous perimetric sensitivities of approximately 15 to 19 dB or less are unreliable involves the idea that the neural response of normal retinal ganglion cells saturates for intense perimetric stimuli. A predicted consequence of this saturation is that the neural response for two different high intensity stimuli will be the same, leading to an inability to discriminate between them. We test that prediction. METHODS: We used a two-interval forced-choice method of constant stimuli (7 steps, 40 presentations/step) to measure the ability of four healthy observers to discriminate between different intensity Size III perimetric stimuli at 0°, 9°, and 21° eccentricity. The lower intensity stimulus for each discrimination was either 27, 23, 19, 15, or 11 dB (Humphrey Field Analyzer equivalents). RESULTS: Foveally, discrimination performance exceeded 90% for all observers provided the more intense stimulus was made sufficiently intense, even if the lower intensity stimulus in the pair was itself already intense (≤19 dB). The shapes of the curves were similar across all lower intensity stimulus values investigated. At 21°, discrimination performance exceeded 90% in three of the four observers despite the lower intensity stimulus being 19 dB. CONCLUSIONS: Observers can reliably discriminate between two different, but both very intense, perimetric stimuli, indicating that responses of the human visual system are not saturated by such stimuli. Therefore, the cause of high perimetric test-retest variability is not readily predicted from our current knowledge of how normal ganglion cells respond to high intensity stimuli.