Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Immediate Text Search on Streams Using Apoptosic Indexes
    Eades, P ; Wirth, A ; Zobel, J ; Hagen, M ; Verberne, S ; Macdonald, C ; Seifert, C ; Balog, K ; Norvag, K ; Setty, V (SPRINGER INTERNATIONAL PUBLISHING AG, 2022)
  • Item
    Thumbnail Image
    Propagation, detection and correction of errors using the sequence database network
    Goudey, B ; Geard, N ; Verspoor, K ; Zobel, J (OXFORD UNIV PRESS, 2022-11)
    Nucleotide and protein sequences stored in public databases are the cornerstone of many bioinformatics analyses. The records containing these sequences are prone to a wide range of errors, including incorrect functional annotation, sequence contamination and taxonomic misclassification. One source of information that can help to detect errors are the strong interdependency between records. Novel sequences in one database draw their annotations from existing records, may generate new records in multiple other locations and will have varying degrees of similarity with existing records across a range of attributes. A network perspective of these relationships between sequence records, within and across databases, offers new opportunities to detect-or even correct-erroneous entries and more broadly to make inferences about record quality. Here, we describe this novel perspective of sequence database records as a rich network, which we call the sequence database network, and illustrate the opportunities this perspective offers for quantification of database quality and detection of spurious entries. We provide an overview of the relevant databases and describe how the interdependencies between sequence records across these databases can be exploited by network analyses. We review the process of sequence annotation and provide a classification of sources of error, highlighting propagation as a major source. We illustrate the value of a network perspective through three case studies that use network analysis to detect errors, and explore the quality and quantity of critical relationships that would inform such network analyses. This systematic description of a network perspective of sequence database records provides a novel direction to combat the proliferation of errors within these critical bioinformatics resources.
  • Item
    Thumbnail Image
    Exploring automatic inconsistency detection for literature-based gene ontology annotation
    Chen, J ; Goudey, B ; Zobel, J ; Geard, N ; Verspoor, K (OXFORD UNIV PRESS, 2022-06-24)
    MOTIVATION: Literature-based gene ontology annotations (GOA) are biological database records that use controlled vocabulary to uniformly represent gene function information that is described in the primary literature. Assurance of the quality of GOA is crucial for supporting biological research. However, a range of different kinds of inconsistencies in between literature as evidence and annotated GO terms can be identified; these have not been systematically studied at record level. The existing manual-curation approach to GOA consistency assurance is inefficient and is unable to keep pace with the rate of updates to gene function knowledge. Automatic tools are therefore needed to assist with GOA consistency assurance. This article presents an exploration of different GOA inconsistencies and an early feasibility study of automatic inconsistency detection. RESULTS: We have created a reliable synthetic dataset to simulate four realistic types of GOA inconsistency in biological databases. Three automatic approaches are proposed. They provide reasonable performance on the task of distinguishing the four types of inconsistency and are directly applicable to detect inconsistencies in real-world GOA database records. Major challenges resulting from such inconsistencies in the context of several specific application settings are reported. This is the first study to introduce automatic approaches that are designed to address the challenges in current GOA quality assurance workflows. The data underlying this article are available in Github at https://github.com/jiyuc/AutoGOAConsistency.
  • Item
    Thumbnail Image
    When proxy-driven learning is no better than random: The consequences of representational incompleteness.
    Zobel, J ; Vázquez-Abad, FJ ; Lin, P ; Gu, Q (Public Library of Science (PLoS), 2022)
    Machine learning is widely used for personalisation, that is, to tune systems with the aim of adapting their behaviour to the responses of humans. This tuning relies on quantified features that capture the human actions, and also on objective functions-that is, proxies - that are intended to represent desirable outcomes. However, a learning system's representation of the world can be incomplete or insufficiently rich, for example if users' decisions are based on properties of which the system is unaware. Moreover, the incompleteness of proxies can be argued to be an intrinsic property of computational systems, as they are based on literal representations of human actions rather than on the human actions themselves; this problem is distinct from the usual aspects of bias that are examined in machine learning literature. We use mathematical analysis and simulations of a reinforcement-learning case study to demonstrate that incompleteness of representation can, first, lead to learning that is no better than random; and second, means that the learning system can be inherently unaware that it is failing. This result has implications for the limits and applications of machine learning systems in human domains.
  • Item
    Thumbnail Image
    Measurement of clustering effectiveness for document collections
    Yuan, M ; Zobel, J ; Lin, P (SPRINGER, 2022-09)
    Abstract Clustering of the contents of a document corpus is used to create sub-corpora with the intention that they are expected to consist of documents that are related to each other. However, while clustering is used in a variety of ways in document applications such as information retrieval, and a range of methods have been applied to the task, there has been relatively little exploration of how well it works in practice. Indeed, given the high dimensionality of the data it is possible that clustering may not always produce meaningful outcomes. In this paper we use a well-known clustering method to explore a variety of techniques, existing and novel, to measure clustering effectiveness. Results with our new, extrinsic techniques based on relevance judgements or retrieved documents demonstrate that retrieval-based information can be used to assess the quality of clustering, and also show that clustering can succeed to some extent at gathering together similar material. Further, they show that intrinsic clustering techniques that have been shown to be informative in other domains do not work for information retrieval. Whether clustering is sufficiently effective to have a significant impact on practical retrieval is unclear, but as the results show our measurement techniques can effectively distinguish between clustering methods.
  • Item
    Thumbnail Image
    Automatic consistency assurance for literature-based gene ontology annotation
    Chen, J ; Geard, N ; Zobel, J ; Verspoor, K (BMC, 2021-11-25)
    BACKGROUND: Literature-based gene ontology (GO) annotation is a process where expert curators use uniform expressions to describe gene functions reported in research papers, creating computable representations of information about biological systems. Manual assurance of consistency between GO annotations and the associated evidence texts identified by expert curators is reliable but time-consuming, and is infeasible in the context of rapidly growing biological literature. A key challenge is maintaining consistency of existing GO annotations as new studies are published and the GO vocabulary is updated. RESULTS: In this work, we introduce a formalisation of biological database annotation inconsistencies, identifying four distinct types of inconsistency. We propose a novel and efficient method using state-of-the-art text mining models to automatically distinguish between consistent GO annotation and the different types of inconsistent GO annotation. We evaluate this method using a synthetic dataset generated by directed manipulation of instances in an existing corpus, BC4GO. We provide detailed error analysis for demonstrating that the method achieves high precision on more confident predictions. CONCLUSIONS: Two models built using our method for distinct annotation consistency identification tasks achieved high precision and were robust to updates in the GO vocabulary. Our approach demonstrates clear value for human-in-the-loop curation scenarios.
  • Item
    Thumbnail Image
    Quality Matters: Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases.
    Chen, Q ; Britto, R ; Erill, I ; Jeffery, CJ ; Liberzon, A ; Magrane, M ; Onami, J-I ; Robinson-Rechavi, M ; Sponarova, J ; Zobel, J ; Verspoor, K (Elsevier, 2020-04)
    Biological databases represent an extraordinary collective volume of work. Diligently built up over decades and comprising many millions of contributions from the biomedical research community, biological databases provide worldwide access to a massive number of records (also known as entries) [1]. Starting from individual laboratories, genomes are sequenced, assembled, annotated, and ultimately submitted to primary nucleotide databases such as GenBank [2], European Nucleotide Archive (ENA) [3], and DNA Data Bank of Japan (DDBJ) [4] (collectively known as the International Nucleotide Sequence Database Collaboration, INSDC). Protein records, which are the translations of these nucleotide records, are deposited into central protein databases such as the UniProt KnowledgeBase (UniProtKB) [5] and the Protein Data Bank (PDB) [6]. Sequence records are further accumulated into different databases for more specialized purposes: RFam [7] and PFam [8] for RNA and protein families, respectively; DictyBase [9] and PomBase [10] for model organisms; as well as ArrayExpress [11] and Gene Expression Omnibus (GEO) [12] for gene expression profiles. These databases are selected as examples; the list is not intended to be exhaustive. However, they are representative of biological databases that have been named in the “golden set” of the 24th Nucleic Acids Research database issue (in 2016). The introduction of that issue highlights the databases that “consistently served as authoritative, comprehensive, and convenient data resources widely used by the entire community and offer some lessons on what makes a successful database” [13]. In addition, the associated information about sequences is also propagated into non-sequence databases, such as PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) for scientific literature or Gene Ontology (GO) [14] for function annotations. These databases in turn benefit individual studies, many of which use these publicly available records as the basis for their own research.
  • Item
    Thumbnail Image
    GeneMates: an R package for detecting horizontal gene co-transfer between bacteria using gene-gene associations controlled for population structure
    Wan, Y ; Wick, RR ; Zobel, J ; Ingle, DJ ; Inouye, M ; Holt, KE (BMC, 2020-09-24)
    BACKGROUND: Horizontal gene transfer contributes to bacterial evolution through mobilising genes across various taxonomical boundaries. It is frequently mediated by mobile genetic elements (MGEs), which may capture, maintain, and rearrange mobile genes and co-mobilise them between bacteria, causing horizontal gene co-transfer (HGcoT). This physical linkage between mobile genes poses a great threat to public health as it facilitates dissemination and co-selection of clinically important genes amongst bacteria. Although rapid accumulation of bacterial whole-genome sequencing data since the 2000s enables study of HGcoT at the population level, results based on genetic co-occurrence counts and simple association tests are usually confounded by bacterial population structure when sampled bacteria belong to the same species, leading to spurious conclusions. RESULTS: We have developed a network approach to explore WGS data for evidence of intraspecies HGcoT and have implemented it in R package GeneMates ( github.com/wanyuac/GeneMates ). The package takes as input an allelic presence-absence matrix of interested genes and a matrix of core-genome single-nucleotide polymorphisms, performs association tests with linear mixed models controlled for population structure, produces a network of significantly associated alleles, and identifies clusters within the network as plausible co-transferred alleles. GeneMates users may choose to score consistency of allelic physical distances measured in genome assemblies using a novel approach we have developed and overlay scores to the network for further evidence of HGcoT. Validation studies of GeneMates on known acquired antimicrobial resistance genes in Escherichia coli and Salmonella Typhimurium show advantages of our network approach over simple association analysis: (1) distinguishing between allelic co-occurrence driven by HGcoT and that driven by clonal reproduction, (2) evaluating effects of population structure on allelic co-occurrence, and (3) direct links between allele clusters in the network and MGEs when physical distances are incorporated. CONCLUSION: GeneMates offers an effective approach to detection of intraspecies HGcoT using WGS data.