Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 318
  • Item
    Thumbnail Image
    Simulated in vivo Electrophysiology Experiments Provide Previously Inaccessible Insights into Visual Physiology.
    Quiroga, M ; Price, NSC ( 2016)
    Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively "experience" the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted.
  • Item
  • Item
    Thumbnail Image
    Detection of Toscana virus from an adult traveler returning to Australia with encephalitis.
    Arden, KE ; Heney, C ; Shaban, B ; Nimmo, GR ; Nissen, MD ; Sloots, TP ; Mackay, IM (Wiley, 2017-10)
    Toscana virus (TOSV) is identified in sandflies, animals, and humans around the Mediterranean Sea. TOSV has not been reported in Australia. During investigations of cerebrospinal fluid samples from patients with encephalitis, TOSV genetic sequences were identified in a traveler returning to Australia from Europe. TOSV should be considered, especially during May to October, in travelers to Australia who embarked in countries in and around the Mediterranean Sea and who subsequently present for medical care because of neurological symptoms.
  • Item
    Thumbnail Image
    Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice
    Gaur, V ; Connor, T ; Venardos, K ; Henstridge, DC ; Martin, SD ; Swinton, C ; Morrison, S ; Aston-Mourney, K ; Gehrig, SM ; van Ewijk, R ; Lynch, GS ; Febbraio, MA ; Steinberg, GR ; Hargreaves, M ; Walder, KR ; McGee, SL (WILEY, 2017-07)
    AIM: To determine the effect of Scriptaid, a compound that can replicate aspects of the exercise adaptive response through disruption of the class IIa histone deacetylase (HDAC) corepressor complex, on muscle insulin action in obesity. MATERIALS AND METHODS: Diet-induced obese mice were administered Scriptaid (1 mg/kg) via daily intraperitoneal injection for 4 weeks. Whole-body and skeletal muscle metabolic phenotyping of mice was performed, in addition to echocardiography, to assess cardiac morphology and function. RESULTS: Scriptaid treatment had no effect on body weight or composition, but did increase energy expenditure, supported by increased lipid oxidation, while food intake was also increased. Scriptaid enhanced the expression of oxidative genes and proteins, increased fatty acid oxidation and reduced triglycerides and diacylglycerides in skeletal muscle. Furthermore, ex vivo insulin-stimulated glucose uptake by skeletal muscle was enhanced. Surprisingly, heart weight was reduced in Scriptaid-treated mice and was associated with enhanced expression of genes involved in oxidative metabolism in the heart. Scriptaid also improved indices of both diastolic and systolic cardiac function. CONCLUSION: These data show that pharmacological targeting of the class IIa HDAC corepressor complex with Scriptaid could be used to enhance muscle insulin action and cardiac function in obesity.
  • Item
    Thumbnail Image
    Topography of Claustrum and Insula Projections to Medial Prefrontal and Anterior Cingulate Cortices of the common marmoset (Callithrix jacchus)
    Reser, DH ; Majka, P ; Snell, S ; Chan, JMH ; Watkins, K ; Worthy, K ; Quiroga, MDM ; Rosa, MGP (WILEY, 2017-04)
  • Item
    Thumbnail Image
    Pro-inflammatory self-reactive T cells are found within murine TCR-αβ+CD4-CD8-PD-1+ cells
    Rodriguez-Rodriguez, N ; Apostolidis, SA ; Fitzgerald, L ; Meehan, BS ; Corbett, AJ ; Martin-Villa, JM ; McCluskey, J ; Tsokos, GC ; Crispin, JC (WILEY-BLACKWELL, 2016-06)
    TCR-αβ(+) double negative (DN) T cells (CD3(+) TCR-αβ(+) CD4(-) CD8(-) NK1.1(-) CD49b(-) ) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro-inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self-reactive CD8(+) T cells become DN after activation by self-antigens, suggesting that self-reactive T cells may exist within the DN T-cell population. Here, we demonstrate that programmed cell death 1 (PD-1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation-associated markers and a phenotype that strongly suggests they are derived from self-reactive CD8(+) cells. We also found that, within DN T cells, the PD-1(+) subset generates the majority of pro-inflammatory cytokines. Finally, using a TCR-activation reporter mouse (Nur77-GFP), we confirmed that in the steady-state PD-1(+) DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD-1(+) fraction of DN T cells represents self-reactive cells.
  • Item
    No Preview Available
    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
    Keller, AN ; Eckle, SBG ; Xu, W ; Liu, L ; Hughes, VA ; Mak, JYW ; Meehan, BS ; Pediongco, T ; Birkinshaw, RW ; Chen, Z ; Wang, H ; D'Souza, C ; Kjer-Nielsen, L ; Gherardin, NA ; Godfrey, DI ; Kostenko, L ; Corbett, AJ ; Purcell, AW ; Fairlie, DP ; McCluskey, J ; Rossjohn, J (NATURE PUBLISHING GROUP, 2017-04)
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • Item
    Thumbnail Image
    Effects of compression garments on recovery following intermittent exercise
    Pruscino, CL ; Halson, S ; Hargreaves, M (SPRINGER, 2013-06)
    The objective of the study was to examine the effects of wearing compression garments for 24 h post-exercise on the biochemical, physical and perceived recovery of highly trained athletes. Eight field hockey players completed a match simulation exercise protocol on two occasions separated by 4 weeks after which lower-limb compression garments (CG) or loose pants (CON) were worn for 24 h. Blood was collected pre-exercise and 1, 24 and 48 h post-exercise for IL-6, IL-1β, TNF-α, CRP and CK. Blood lactate was monitored throughout exercise and for 30 min after. A 5 counter-movement jump (5CMJ) and squat jump were performed and perceived soreness rated at pre-exercise and 1, 24 and 48 h post-exercise. Perceived recovery was assessed post-exercise using a questionnaire related to exercise readiness. Repeated measures ANOVA was used to assess changes in blood, perceptual and physical responses to recovery. CK and CRP were significantly elevated 24 h post-exercise in both conditions (p < 0.05). No significant differences were observed for TNF-α, IL1-β, IL-6 between treatments (p > 0.05). Power and force production in the 5CMJ was reduced and perceived soreness was highest at 1 h post-exercise (p < 0.05). Perceived recovery was lowest at 1 h post-exercise in both conditions (p < 0.01), whilst overall, perceived recovery was greater when CG were worn (p < 0.005). None of the blood or physical markers of recovery indicates any benefit of wearing compression garments post-exercise. However, muscle soreness and perceived recovery indicators suggest a psychological benefit may exist.
  • Item
    Thumbnail Image
    The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions
    Illing, PT ; Purcell, AW ; McCluskey, J (SPRINGER, 2017-08)
    Genetic polymorphism in the genes encoding the human leukocyte antigen (HLA) molecules enables presentation of a wide range peptide ligands thus maximising immune surveillance of pathogens. A consequence of the diversification of the HLA Ag-binding pocket is the enhanced opportunity for off-target binding of small drugs by HLA molecules, with subsequent immune reactivity. These potential off-target interactions are 'set up' to generate T cell-mediated adverse drug reactions even though the precise mechanisms of most HLA-drug interactions are still poorly understood. The association between abacavir hypersensitivity syndrome and HLA-B*57:01 is one exception that has been resolved at a molecular and mechanistic level. Here, we explore the road to understanding the interaction between abacavir and the HLA-B*57:01 molecule and review the current state of understanding of interactions between other drugs and HLA molecules implicated in adverse drug reactions, which appear to involve multiple mechanisms. The continued expansion of the pharmacopoeia generates an imperative to understand these interactions at the molecular level in order to prevent the continued burden on individuals and the health care system.
  • Item
    Thumbnail Image
    Genome sequence of the pathogenic intestinal spirochete brachyspira hyodysenteriae reveals adaptations to its lifestyle in the porcine large intestine.
    Bellgard, MI ; Wanchanthuek, P ; La, T ; Ryan, K ; Moolhuijzen, P ; Albertyn, Z ; Shaban, B ; Motro, Y ; Dunn, DS ; Schibeci, D ; Hunter, A ; Barrero, R ; Phillips, ND ; Hampson, DJ ; Ahmed, N (Public Library of Science (PLoS), 2009)
    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.