Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 209
  • Item
    Thumbnail Image
    plyranges: a grammar of genomic data transformation
    Lee, S ; Cook, D ; Lawrence, M (BMC, 2019-01-04)
    Bioconductor is a widely used R-based platform for genomics, but its host of complex genomic data structures places a cognitive burden on the user. For most tasks, the GRanges object would suffice, but there are gaps in the API that prevent its general use. By recognizing that the GRanges class follows "tidy" data principles, we create a grammar of genomic data transformation, defining verbs for performing actions on and between genomic interval data and providing a way of performing common data analysis tasks through a coherent interface to existing Bioconductor infrastructure. We implement this grammar as a Bioconductor/R package called plyranges.
  • Item
    Thumbnail Image
    Simulated in vivo Electrophysiology Experiments Provide Previously Inaccessible Insights into Visual Physiology.
    Quiroga, M ; Price, NSC ( 2016)
    Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively "experience" the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted.
  • Item
    Thumbnail Image
    IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection
    Wang, H ; Kjer-Nielsen, L ; Shi, M ; D'Souza, C ; Pediongco, TJ ; Cao, H ; Kostenko, L ; Lim, XY ; Eckle, SBG ; Meehan, BS ; Zhu, T ; Wang, B ; Zhao, Z ; Mak, JYW ; Fairlie, DP ; Teng, MWL ; Rossjohn, J ; Yu, D ; de St Groth, BF ; Lovrecz, G ; Lu, L ; McCluskey, J ; Strugnell, RA ; Corbett, AJ ; Chen, Z (AMER ASSOC ADVANCEMENT SCIENCE, 2019-11-01)
    Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow–derived APCs or non–bone marrow–derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell–mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
  • Item
    Thumbnail Image
    Uteroplacental insufficiency in rats induces renal apoptosis and delays nephrogenesis completion
    Cuffe, JSM ; Briffa, JF ; Rosser, S ; Siebel, AL ; Romano, T ; Hryciw, DH ; Wlodek, ME ; Moritz, KM (WILEY, 2018-03)
    AIM: Uteroplacental insufficiency in rats reduces nephron endowment, leptin concentrations and programmes cardiorenal disease in offspring. Cross-fostering growth-restricted (Restricted) offspring onto a mother with normal lactation restores leptin concentrations and nephron endowment. This study aimed to determine whether the reduced nephron endowment in Restricted offspring is due to delayed glomerular formation and dysregulation of renal genes regulating branching morphogenesis, apoptosis or leptin signalling. Furthermore, we aimed to investigate whether cross-fostering Restricted offspring onto Control mothers could improve glomerular maturation and restore renal gene abundance. METHODS: Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on gestation day 18 (E18). Kidneys were collected at E20, postnatal day 1 (PN1) and PN7. An additional cohort was cross-fostered onto separate mothers at birth and kidneys collected at PN7. RESULTS: Kidneys were lighter in the Restricted group, but weight was restored with cross-fostering. At E20, abundance of Bax, Flt1 and Vegfa was increased in Restricted offspring, while Ret and Bcl2 transcripts were increased only in Restricted females. At PN7, abundance of Gdnf and Ret was higher in Restricted offspring, as was Casp3. Restricted offspring had a wider nephrogenic zone with more immature glomeruli suggesting a delayed or extended nephrogenic period. Cross-fostering had subtle effects on gene abundance and glomerular maturity. CONCLUSION: Uteroplacental insufficiency induced apoptosis in the developing kidney and delayed and extended nephrogenesis. Cross-fostering Restricted offspring onto Control mothers had beneficial effects on kidney growth and renal maturity, which may contribute to the restoration of nephron endowment.
  • Item
    Thumbnail Image
    Detection of Toscana virus from an adult traveler returning to Australia with encephalitis.
    Arden, KE ; Heney, C ; Shaban, B ; Nimmo, GR ; Nissen, MD ; Sloots, TP ; Mackay, IM (Wiley, 2017-10)
    Toscana virus (TOSV) is identified in sandflies, animals, and humans around the Mediterranean Sea. TOSV has not been reported in Australia. During investigations of cerebrospinal fluid samples from patients with encephalitis, TOSV genetic sequences were identified in a traveler returning to Australia from Europe. TOSV should be considered, especially during May to October, in travelers to Australia who embarked in countries in and around the Mediterranean Sea and who subsequently present for medical care because of neurological symptoms.
  • Item
    Thumbnail Image
    Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice
    Gaur, V ; Connor, T ; Venardos, K ; Henstridge, DC ; Martin, SD ; Swinton, C ; Morrison, S ; Aston-Mourney, K ; Gehrig, SM ; van Ewijk, R ; Lynch, GS ; Febbraio, MA ; Steinberg, GR ; Hargreaves, M ; Walder, KR ; McGee, SL (WILEY, 2017-07)
    AIM: To determine the effect of Scriptaid, a compound that can replicate aspects of the exercise adaptive response through disruption of the class IIa histone deacetylase (HDAC) corepressor complex, on muscle insulin action in obesity. MATERIALS AND METHODS: Diet-induced obese mice were administered Scriptaid (1 mg/kg) via daily intraperitoneal injection for 4 weeks. Whole-body and skeletal muscle metabolic phenotyping of mice was performed, in addition to echocardiography, to assess cardiac morphology and function. RESULTS: Scriptaid treatment had no effect on body weight or composition, but did increase energy expenditure, supported by increased lipid oxidation, while food intake was also increased. Scriptaid enhanced the expression of oxidative genes and proteins, increased fatty acid oxidation and reduced triglycerides and diacylglycerides in skeletal muscle. Furthermore, ex vivo insulin-stimulated glucose uptake by skeletal muscle was enhanced. Surprisingly, heart weight was reduced in Scriptaid-treated mice and was associated with enhanced expression of genes involved in oxidative metabolism in the heart. Scriptaid also improved indices of both diastolic and systolic cardiac function. CONCLUSION: These data show that pharmacological targeting of the class IIa HDAC corepressor complex with Scriptaid could be used to enhance muscle insulin action and cardiac function in obesity.
  • Item
    Thumbnail Image
    Topography of Claustrum and Insula Projections to Medial Prefrontal and Anterior Cingulate Cortices of the common marmoset (Callithrix jacchus)
    Reser, DH ; Majka, P ; Snell, S ; Chan, JMH ; Watkins, K ; Worthy, K ; Quiroga, MDM ; Rosa, MGP (WILEY, 2017-04)
  • Item
    Thumbnail Image
    Pro-inflammatory self-reactive T cells are found within murine TCR-αβ+CD4-CD8-PD-1+ cells
    Rodriguez-Rodriguez, N ; Apostolidis, SA ; Fitzgerald, L ; Meehan, BS ; Corbett, AJ ; Martin-Villa, JM ; McCluskey, J ; Tsokos, GC ; Crispin, JC (WILEY-BLACKWELL, 2016-06)
    TCR-αβ(+) double negative (DN) T cells (CD3(+) TCR-αβ(+) CD4(-) CD8(-) NK1.1(-) CD49b(-) ) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro-inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self-reactive CD8(+) T cells become DN after activation by self-antigens, suggesting that self-reactive T cells may exist within the DN T-cell population. Here, we demonstrate that programmed cell death 1 (PD-1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation-associated markers and a phenotype that strongly suggests they are derived from self-reactive CD8(+) cells. We also found that, within DN T cells, the PD-1(+) subset generates the majority of pro-inflammatory cytokines. Finally, using a TCR-activation reporter mouse (Nur77-GFP), we confirmed that in the steady-state PD-1(+) DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD-1(+) fraction of DN T cells represents self-reactive cells.
  • Item
    No Preview Available
    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
    Keller, AN ; Eckle, SBG ; Xu, W ; Liu, L ; Hughes, VA ; Mak, JYW ; Meehan, BS ; Pediongco, T ; Birkinshaw, RW ; Chen, Z ; Wang, H ; D'Souza, C ; Kjer-Nielsen, L ; Gherardin, NA ; Godfrey, DI ; Kostenko, L ; Corbett, AJ ; Purcell, AW ; Fairlie, DP ; McCluskey, J ; Rossjohn, J (NATURE PUBLISHING GROUP, 2017-04)
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Acs, A ; Adam, D ; Adam-Klages, S ; Agace, WW ; Aghaeepour, N ; Akdis, M ; Allez, M ; Almeida, LN ; Alvisi, G ; Anderson, G ; Andrae, I ; Annunziato, F ; Anselmo, A ; Bacher, P ; Baldari, CT ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Battistini, L ; Bauer, W ; Baumgart, S ; Baumgarth, N ; Baumjohann, D ; Baying, B ; Bebawy, M ; Becher, B ; Beisker, W ; Benes, V ; Beyaert, R ; Blanco, A ; Boardman, DA ; Bogdan, C ; Borger, JG ; Borsellino, G ; Boulais, PE ; Bradford, JA ; Brenner, D ; Brinkman, RR ; Brooks, AES ; Busch, DH ; Buescher, M ; Bushnell, TP ; Calzetti, F ; Cameron, G ; Cammarata, I ; Cao, X ; Cardell, SL ; Casola, S ; Cassatella, MA ; Cavani, A ; Celada, A ; Chatenoud, L ; Chattopadhyay, PK ; Chow, S ; Christakou, E ; Cicin-Sain, L ; Clerici, M ; Colombo, FS ; Cook, L ; Cooke, A ; Cooper, AM ; Corbett, AJ ; Cosma, A ; Cosmi, L ; Coulie, PG ; Cumano, A ; Cvetkovic, L ; Dang, VD ; Dang-Heine, C ; Davey, MS ; Davies, D ; De Biasi, S ; Del Zotto, G ; Dela Cruz, GV ; Delacher, M ; Della Bella, S ; Dellabona, P ; Deniz, G ; Dessing, M ; Di Santo, JP ; Diefenbach, A ; Dieli, F ; Dolf, A ; Doerner, T ; Dress, RJ ; Dudziak, D ; Dustin, M ; Dutertre, C-A ; Ebner, F ; Eckle, SBG ; Edinger, M ; Eede, P ; Ehrhardt, GRA ; Eich, M ; Engel, P ; Engelhardt, B ; Erdei, A ; Esser, C ; Everts, B ; Evrard, M ; Falk, CS ; Fehniger, TA ; Felipo-Benavent, M ; Ferry, H ; Feuerer, M ; Filby, A ; Filkor, K ; Fillatreau, S ; Follo, M ; Foerster, I ; Foster, J ; Foulds, GA ; Frehse, B ; Frenette, PS ; Frischbutter, S ; Fritzsche, W ; Galbraith, DW ; Gangaev, A ; Garbi, N ; Gaudilliere, B ; Gazzinelli, RT ; Geginat, J ; Gerner, W ; Gherardin, NA ; Ghoreschi, K ; Gibellini, L ; Ginhoux, F ; Goda, K ; Godfrey, DI ; Goettlinger, C ; Gonzalez-Navajas, JM ; Goodyear, CS ; Gori, A ; Grogan, JL ; Grummitt, D ; Gruetzkau, A ; Haftmann, C ; Hahn, J ; Hammad, H ; Haemmerling, G ; Hansmann, L ; Hansson, G ; Harpur, CM ; Hartmann, S ; Hauser, A ; Hauser, AE ; Haviland, DL ; Hedley, D ; Hernandez, DC ; Herrera, G ; Herrmann, M ; Hess, C ; Hoefer, T ; Hoffmann, P ; Hogquist, K ; Holland, T ; Hollt, T ; Holmdahl, R ; Hombrink, P ; Houston, JP ; Hoyer, BF ; Huang, B ; Huang, F-P ; Huber, JE ; Huehn, J ; Hundemer, M ; Hunter, CA ; Hwang, WYK ; Iannone, A ; Ingelfinger, F ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Javega, B ; Jonjic, S ; Kaiser, T ; Kalina, T ; Kamradt, T ; Kaufmann, SHE ; Keller, B ; Ketelaars, SLC ; Khalilnezhad, A ; Khan, S ; Kisielow, J ; Klenerman, P ; Knopf, J ; Koay, H-F ; Kobow, K ; Kolls, JK ; Kong, WT ; Kopf, M ; Korn, T ; Kriegsmann, K ; Kristyanto, H ; Kroneis, T ; Krueger, A ; Kuehne, J ; Kukat, C ; Kunkel, D ; Kunze-Schumacher, H ; Kurosaki, T ; Kurts, C ; Kvistborg, P ; Kwok, I ; Landry, J ; Lantz, O ; Lanuti, P ; LaRosa, F ; Lehuen, A ; LeibundGut-Landmann, S ; Leipold, MD ; Leung, LYT ; Levings, MK ; Lino, AC ; Liotta, F ; Litwin, V ; Liu, Y ; Ljunggren, H-G ; Lohoff, M ; Lombardi, G ; Lopez, L ; Lopez-Botet, M ; Lovett-Racke, AE ; Lubberts, E ; Luche, H ; Ludewig, B ; Lugli, E ; Lunemann, S ; Maecker, HT ; Maggi, L ; Maguire, O ; Mair, F ; Mair, KH ; Mantovani, A ; Manz, RA ; Marshall, AJ ; Martinez-Romero, A ; Martrus, G ; Marventano, I ; Maslinski, W ; Matarese, G ; Mattioli, AV ; Maueroder, C ; Mazzoni, A ; McCluskey, J ; McGrath, M ; McGuire, HM ; McInnes, IB ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Miller, SD ; Mills, KHG ; Minderman, H ; Mjosberg, J ; Moore, J ; Moran, B ; Moretta, L ; Mosmann, TR ; Mueller, S ; Multhoff, G ; Munoz, LE ; Munz, C ; Nakayama, T ; Nasi, M ; Neumann, K ; Ng, LG ; Niedobitek, A ; Nourshargh, S ; Nunez, G ; O'Connor, J-E ; Ochel, A ; Oja, A ; Ordonez, D ; Orfao, A ; Orlowski-Oliver, E ; Ouyang, W ; Oxenius, A ; Palankar, R ; Panse, I ; Pattanapanyasat, K ; Paulsen, M ; Pavlinic, D ; Penter, L ; Peterson, P ; Peth, C ; Petriz, J ; Piancone, F ; Pickl, WF ; Piconese, S ; Pinti, M ; Pockley, AG ; Podolska, MJ ; Poon, Z ; Pracht, K ; Prinz, I ; Pucillo, CEM ; Quataert, SA ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Radstake, TRDJ ; Rahmig, S ; Rahn, H-P ; Rajwa, B ; Ravichandran, G ; Raz, Y ; Rebhahn, JA ; Recktenwald, D ; Reimer, D ; Reis e Sousa, C ; Remmerswaal, EBM ; Richter, L ; Rico, LG ; Riddell, A ; Rieger, AM ; Robinson, JP ; Romagnani, C ; Rubartelli, A ; Ruland, J ; Saalmueller, A ; Saeys, Y ; Saito, T ; Sakaguchi, S ; Sala-de-Oyanguren, F ; Samstag, Y ; Sanderson, S ; Sandrock, I ; Santoni, A ; Sanz, RB ; Saresella, M ; Sautes-Fridman, C ; Sawitzki, B ; Schadt, L ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schimisky, E ; Schlitzer, A ; Schlosser, J ; Schmid, S ; Schmitt, S ; Schober, K ; Schraivogel, D ; Schuh, W ; Schueler, T ; Schulte, R ; Schulz, AR ; Schulz, SR ; Scotta, C ; Scott-Algara, D ; Sester, DP ; Shankey, TV ; Silva-Santos, B ; Simon, AK ; Sitnik, KM ; Sozzani, S ; Speiser, DE ; Spidlen, J ; Stahlberg, A ; Stall, AM ; Stanley, N ; Stark, R ; Stehle, C ; Steinmetz, T ; Stockinger, H ; Takahama, Y ; Takeda, K ; Tan, L ; Tarnok, A ; Tiegs, G ; Toldi, G ; Tornack, J ; Traggiai, E ; Trebak, M ; Tree, TIM ; Trotter, J ; Trowsdale, J ; Tsoumakidou, M ; Ulrich, H ; Urbanczyk, S ; van de Veen, W ; van den Broek, M ; van der Pol, E ; Van Gassen, S ; Van Isterdael, G ; van Lier, RAW ; Veldhoen, M ; Vento-Asturias, S ; Vieira, P ; Voehringer, D ; Volk, H-D ; von Borstel, A ; von Volkmann, K ; Waisman, A ; Walker, RV ; Wallace, PK ; Wang, SA ; Wang, XM ; Ward, MD ; Ward-Hartstonge, KA ; Warnatz, K ; Warnes, G ; Warth, S ; Waskow, C ; Watson, JV ; Watzl, C ; Wegener, L ; Weisenburger, T ; Wiedemann, A ; Wienands, J ; Wilharm, A ; Wilkinson, RJ ; Willimsky, G ; Wing, JB ; Winkelmann, R ; Winkler, TH ; Wirz, OF ; Wong, A ; Wurst, P ; Yang, JHM ; Yang, J ; Yazdanbakhsh, M ; Yu, L ; Yue, A ; Zhang, H ; Zhao, Y ; Ziegler, SM ; Zielinski, C ; Zimmermann, J ; Zychlinsky, A (WILEY, 2019-10)
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.