Chancellery Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    The establishment of a cytomegalovirus -specific CD8+ T-cell threshold by kinetic modeling for the prediction of post-hemopoietic stem cell transplant reactivation
    Zhang, J ; Cao, J ; Zheng, R ; Yu, M ; Lin, Z ; Wang, C ; McCluskey, J ; Yang, J ; Chen, Z ; Corbett, AJ ; Cao, P ; Mo, W ; Wang, Z (CELL PRESS, 2022-11-18)
    The dynamic interaction between the CMV virus and host immune response remains obscure, thus hindering the diagnosis and therapeutic management of patients with HSCT. The current diagnosis of CMV viremia depends on viral load estimation. Medical intervention based on viral load, can be unnecessary or poorly timed for many patients. Here we examined the clinical features and blood samples of patients with HSCT and assessed the CMV reactivation kinetics and corresponding CMV antigen-specific T-cell response in individual patients based on a peptide pool stimulation T-cell assay, which showed that CMV-specific CD8+ T cells were more suitable to be a diagnosis indicator for suppressing CMV reactivation. Using ROC analysis, we defined and verified a CMV-specific CD8+ T-cell counts threshold (925 cells/106 PBMCs) as an indicator of CMV reactivation post-HSCT, and suggested that use of this threshold would provide more accurate guidance for prompt medication and better management of CMV infection post-HSCT.
  • Item
    No Preview Available
    Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation
    Suliman, S ; Kjer-Nielsen, L ; Iwany, SK ; Tamara, KL ; Loh, L ; Grzelak, L ; Kedzierska, K ; Ocampo, TA ; Corbett, AJ ; McCluskey, J ; Rossjohn, J ; Leon, SR ; Calderon, R ; Lecca-Garcia, L ; Murray, MB ; Moody, DB ; Van Rhijn, I (AMER ASSOC IMMUNOLOGISTS, 2022-03-15)
    Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRβ-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRβ-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous β-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    Thumbnail Image
    Quantitative affinity measurement of small molecule ligand binding to major histocompatibility complex class-I-related protein 1 MR1
    Wang, CJH ; Awad, W ; Liu, L ; Mak, JYW ; Veerapen, N ; Illing, PT ; Purcell, AW ; Eckle, SBG ; McCluskey, J ; Besra, GS ; Fairlie, DP ; Rossjohn, J ; Le Nours, J (ELSEVIER, 2022-12)
    The Major Histocompatibility Complex class I-related protein 1 (MR1) presents small molecule metabolites, drugs, and drug-like molecules that are recognized by MR1-reactive T cells. While we have an understanding of how antigens bind to MR1 and upregulate MR1 cell surface expression, a quantitative, cell-free, assessment of MR1 ligand-binding affinity was lacking. Here, we developed a fluorescence polarization-based assay in which fluorescent MR1 ligand was loaded into MR1 protein in vitro and competitively displaced by candidate ligands over a range of concentrations. Using this assay, ligand affinity for MR1 could be differentiated as strong (IC50 < 1 μM), moderate (1 μM < IC50 < 100 μM), and weak (IC50 > 100 μM). We demonstrated a clear correlation between ligand-binding affinity for MR1, the presence of a covalent bond between MR1 and ligand, and the number of salt bridge and hydrogen bonds formed between MR1 and ligand. Using this newly developed fluorescence polarization-based assay to screen for candidate ligands, we identified the dietary molecules vanillin and ethylvanillin as weak bona fide MR1 ligands. Both upregulated MR1 on the surface of C1R.MR1 cells and the crystal structure of a MAIT cell T cell receptor-MR1-ethylvanillin complex revealed that ethylvanillin formed a Schiff base with K43 of MR1 and was buried within the A'-pocket. Collectively, we developed and validated a method to quantitate the binding affinities of ligands for MR1 that will enable an efficient and rapid screening of candidate MR1 ligands.
  • Item
    Thumbnail Image
    The role of mucosal-associated invariant T cells in visceral leishmaniasis
    Moreira, MDL ; Borges-Fernandes, LO ; Pascoal-Xavier, MA ; Ribeiro, AL ; Silva Pereira, VH ; Pediongco, T ; da Silva Araujo, MS ; Teixeira-Carvalho, A ; de Carvalho, AL ; Assumpcao Mourao, MV ; Campos, FA ; Borges, M ; Carneiro, M ; Chen, Z ; Saunders, E ; McConville, M ; Tsuji, M ; McCluskey, J ; Martins-Filho, OA ; Guiomar Eckle, SB ; Alves Coelho-dos-Reis, JG ; Peruhype-Magalhaes, V (FRONTIERS MEDIA SA, 2022-09-15)
    Mucosal-associated invariant T (MAIT) cells are restricted by MR1 and are known to protect against bacterial and viral infections. Our understanding of the role of MAIT cells in parasitic infections, such as visceral leishmaniasis (VL) caused by protozoan parasites of Leishmania donovani, is limited. This study showed that in response to L. infantum, human peripheral blood MAIT cells from children with leishmaniasis produced TNF and IFN-γ in an MR1-dependent manner. The overall frequency of MAIT cells was inversely correlated with alanine aminotransferase levels, a specific marker of liver damage strongly associated with severe hepatic involvement in VL. In addition, there was a positive correlation between total protein levels and the frequency of IL-17A+ CD8+ MAIT cells, whereby reduced total protein levels are a marker of liver and kidney damage. Furthermore, the frequencies of IFN-γ+ and IL-10+ MAIT cells were inversely correlated with hemoglobin levels, a marker of severe anemia. In asymptomatic individuals and VL patients after treatment, MAIT cells also produced IL-17A, a cytokine signature associated with resistance to visceral leishmaniasis, suggesting that MAIT cells play important role in protecting against VL. In summary, these results broaden our understanding of MAIT-cell immunity to include protection against parasitic infections, with implications for MAIT-cell-based therapeutics and vaccines. At last, this study paves the way for the investigation of putative MAIT cell antigens that could exist in the context of Leishmania infection.
  • Item
    Thumbnail Image
    CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells
    Souter, MNT ; Awad, W ; Li, S ; Pediongco, T ; Meehan, BS ; Meehan, LJ ; Tian, Z ; Zhao, Z ; Wang, H ; Nelson, A ; Le Nours, J ; Khandokar, Y ; Praveena, T ; Wubben, J ; Lin, J ; Sullivan, LC ; Lovrecz, G ; Mak, JYW ; Liu, L ; Kostenko, L ; Kedzierska, K ; Corbett, AJ ; Fairlie, DP ; Brooks, AG ; Gherardin, NA ; Uldrich, AP ; Chen, Z ; Rossjohn, J ; Godfrey, DI ; MCCLUSKEY, J ; Pellicci, DG ; Eckle, SBG (Rockefeller University Press, 2022)
    Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
  • Item
    No Preview Available
    The balance of interleukin-12 and interleukin-23 determines the bias of MAIT1 versus MAIT17 responses during bacterial infection
    Wang, H ; Nelson, AG ; Wang, B ; Zhao, Z ; Lim, XY ; Shi, M ; Meehan, LJ ; Jia, X ; Kedzierska, K ; Meehan, BS ; Eckle, SBG ; Souter, MNT ; Pediongco, TJ ; Mak, JYW ; Fairlie, DP ; McCluskey, J ; Wang, Z ; Corbett, AJ ; Chen, Z (WILEY, 2022-08)
    Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells mediating protection against bacterial infection through recognition of microbial metabolites derived from riboflavin biosynthesis. Mouse MAIT cells egress from the thymus as two main subpopulations with distinct functions, namely, T-bet-expressing MAIT1 and RORγt-expressing MAIT17 cells. Previously, we reported that inducible T-cell costimulator and interleukin (IL)-23 provide essential signals for optimal MHC-related protein 1 (MR1)-dependent activation and expansion of MAIT17 cells in vivo. Here, in a model of tularemia, in which MAIT1 responses predominate, we demonstrate that IL-12 and IL-23 promote MAIT1 cell expansion during acute infection and that IL-12 is indispensable for MAIT1 phenotype and function. Furthermore, we showed that the bias toward MAIT1 or MAIT17 responses we observed during different bacterial infections was determined and modulated by the balance between IL-12 and IL-23 and that these responses could be recapitulated by cytokine coadministration with antigen. Our results indicate a potential for tailored immunotherapeutic interventions via MAIT cell manipulation.
  • Item
    No Preview Available
    Mouse models illuminate MAIT cell biology
    Wang, H ; Chen, Z ; McCluskey, J ; Corbett, AJ (PERGAMON-ELSEVIER SCIENCE LTD, 2021-02)
    The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.
  • Item
    No Preview Available
    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
    Cossarizza, A ; Chang, H-D ; Radbruch, A ; Abrignani, S ; Addo, R ; Akdis, M ; Andrae, I ; Andreata, F ; Annunziato, F ; Arranz, E ; Bacher, P ; Bari, S ; Barnaba, V ; Barros-Martins, J ; Baumjohann, D ; Beccaria, CG ; Bernardo, D ; Boardman, DA ; Borger, J ; Boettcher, C ; Brockmann, L ; Burns, M ; Busch, DH ; Cameron, G ; Cammarata, I ; Cassotta, A ; Chang, Y ; Chirdo, FG ; Christakou, E ; Cicin-Sain, L ; Cook, L ; Corbett, AJ ; Cornelis, R ; Cosmi, L ; Davey, MS ; De Biasi, S ; De Simone, G ; del Zotto, G ; Delacher, M ; Di Rosa, F ; Di Santo, J ; Diefenbach, A ; Dong, J ; Doerner, T ; Dress, RJ ; Dutertre, C-A ; Eckle, SBG ; Eede, P ; Evrard, M ; Falk, CS ; Feuerer, M ; Fillatreau, S ; Fiz-Lopez, A ; Follo, M ; Foulds, GA ; Froebel, J ; Gagliani, N ; Galletti, G ; Gangaev, A ; Garbi, N ; Garrote, JA ; Geginat, J ; Gherardin, NA ; Gibellini, L ; Ginhoux, F ; Godfrey, DI ; Gruarin, P ; Haftmann, C ; Hansmann, L ; Harpur, CM ; Hayday, AC ; Heine, G ; Hernandez, DC ; Herrmann, M ; Hoelsken, O ; Huang, Q ; Huber, S ; Huber, JE ; Huehn, J ; Hundemer, M ; Hwang, WYK ; Iannacone, M ; Ivison, SM ; Jaeck, H-M ; Jani, PK ; Keller, B ; Kessler, N ; Ketelaars, S ; Knop, L ; Knopf, J ; Koay, H-F ; Kobow, K ; Kriegsmann, K ; Kristyanto, H ; Krueger, A ; Kuehne, JF ; Kunze-Schumacher, H ; Kvistborg, P ; Kwok, I ; Latorre, D ; Lenz, D ; Levings, MK ; Lino, AC ; Liotta, F ; Long, HM ; Lugli, E ; MacDonald, KN ; Maggi, L ; Maini, MK ; Mair, F ; Manta, C ; Manz, RA ; Mashreghi, M-F ; Mazzoni, A ; McCluskey, J ; Mei, HE ; Melchers, F ; Melzer, S ; Mielenz, D ; Monin, L ; Moretta, L ; Multhoff, G ; Munoz, LE ; Munoz-Ruiz, M ; Muscate, F ; Natalini, A ; Neumann, K ; Ng, LG ; Niedobitek, A ; Niemz, J ; Almeida, LN ; Notarbartolo, S ; Ostendorf, L ; Pallett, LJ ; Patel, AA ; Percin, GI ; Peruzzi, G ; Pinti, M ; Pockley, AG ; Pracht, K ; Prinz, I ; Pujol-Autonell, I ; Pulvirenti, N ; Quatrini, L ; Quinn, KM ; Radbruch, H ; Rhys, H ; Rodrigo, MB ; Romagnani, C ; Saggau, C ; Sakaguchi, S ; Sallusto, F ; Sanderink, L ; Sandrock, I ; Schauer, C ; Scheffold, A ; Scherer, HU ; Schiemann, M ; Schildberg, FA ; Schober, K ; Schoen, J ; Schuh, W ; Schueler, T ; Schulz, AR ; Schulz, S ; Schulze, J ; Simonetti, S ; Singh, J ; Sitnik, KM ; Stark, R ; Starossom, S ; Stehle, C ; Szelinski, F ; Tan, L ; Tarnok, A ; Tornack, J ; Tree, TIM ; van Beek, JJP ; van de Veen, W ; van Gisbergen, K ; Vasco, C ; Verheyden, NA ; von Borstel, A ; Ward-Hartstonge, KA ; Warnatz, K ; Waskow, C ; Wiedemann, A ; Wilharm, A ; Wing, J ; Wirz, O ; Wittner, J ; Yang, JHM ; Yang, J (WILEY, 2021-12)
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
  • Item
    Thumbnail Image
    Differential antigenic requirements by diverse MR1-restricted T cells
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-02)
    MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells to probe the MR1 restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumor-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43) and demonstrate competitive inhibition by the MR1 ligand 6-formylpterin. TCR-expressing reporter lines, however, failed to recapitulate the robust tumor specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumor reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restricted αβ TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.