Sir Peter MacCallum Department of Oncology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Examining the effects of BRAF, MEK and CDK4/6 inhibition on anti-tumor immunity in BRAFV600 melanoma
    Lelliott, Emily Jane ( 2020)
    The recent advent of targeted and immune-based therapies has revolutionized the treatment of melanoma, and transformed outcomes for patients with metastatic disease. However, the mechanisms underpinning the clinical efficacy of these approaches are still being elucidated. The majority of patients develop resistance to the current standard-of-care targeted therapy, dual BRAF and MEK inhibition (BRAFi+MEKi), prompting evaluation of a new combination incorporating a CDK4/6 inhibitor. Based on promising preclinical data, combined BRAF, MEK and CDK4/6 inhibition (triple therapy) has recently entered clinical trials for the treatment of BRAFV600 melanoma. Interestingly, while BRAFi+MEKi therapy was initially developed on the basis of potent tumor-intrinsic effects, it was later discovered to have significant immune-potentiating activity. Recent studies have also identified immune-related impacts of CDK4/6 inhibition, though these are less well defined and appear to be both immune-potentiating and immune-inhibitory. BRAFV600 melanoma patients are also eligible for immunotherapies, and hence the immunomodulatory activity of these targeted inhibitors makes first-line treatment decisions complex. The aim of this thesis was to examine the immunomodulatory effects of BRAF, MEK and CDK4/6 inhibition, with an ultimate goal of providing critical information to aid in the clinical management of BRAFV600 melanoma patients. Examining mechanisms of the immunomodulatory effects of targeted therapies requires preclinical mouse models of melanoma that are both immunogenic, and harbor the oncogenic drivers targeted by the therapies being evaluated. To address this, we developed a novel immunogenic BrafV600ECdkn2a-/-Pten-/- melanoma mouse model, called YOVAL1.1. YOVAL1.1 tumors are transplantable in immunocompetent mice and amenable to standard-of-care melanoma therapies, including BRAFi+MEKi and immune checkpoint blockade. This, coupled with the Cdkn2a status, which infers some sensitivity to CDK4/6 inhibitors, makes this an ideal preclinical model to evaluate the immunomodulatory effects of the triple therapy. Using this model, we demonstrated that triple therapy promotes durable tumor control through tumor-intrinsic mechanisms, while promoting immunogenic cell death and T cell infiltration. However, despite this, tumors treated with triple therapy were unresponsive to immune checkpoint blockade. Flow cytometric and single cell RNA-seq analyses of tumor infiltrating immune populations revealed that triple therapy markedly depleted pro-inflammatory macrophages and cross priming CD103+ dendritic cells, the absence of which correlated with poor overall survival and clinical responses to immune checkpoint blockade in melanoma patients. Indeed, immune populations isolated from tumors of mice treated with triple therapy failed to stimulate T cell responses ex vivo. Hence, while combined BRAF, MEK and CDK4/6 inhibition demonstrated favorable tumor-intrinsic activity, these data suggest that collateral effects on tumor-infiltrating myeloid populations may impact on anti-tumor immunity. Several recent studies have reported immune-potentiating effects of CDK4/6 inhibition, and subsequent synergy with immune checkpoint blockade. However, T cells are the primary target of these immunotherapies, and an understanding of the direct effects of CDK4/6 inhibition on this cellular subset was lacking. In this thesis, using integrated epigenomic, transcriptomic and single cell CITE-seq analyses, we identified a novel role for CDK4/6 in regulating T cell fate. Specifically, we demonstrated that CDK4/6 inhibition promoted the phenotypic and functional acquisition of T cell memory. Genome-wide CRISPR/Cas9 screening and phospho-proteomics revealed that memory formation in response to CDK4/6 inhibition was cell intrinsic and required RB. Pre-conditioning human CAR T cells with a CDK4/6 inhibitor enhanced their persistence and tumor control, and clinical treatment with a CDK4/6 inhibitor promoted expansion of memory T cells in a melanoma patient, priming a response to immune checkpoint blockade. Collectively these findings highlight the multi-faceted immunomodulatory activity of BRAF, MEK and CDK4/6 inhibition. The addition of a CDK4/6 inhibitor to dual BRAFi+MEKi led to the depletion of intratumoral myeloid subsets that may be critical for supporting a therapeutically beneficial T cell response. In contrast, as an individual therapy, CDK4/6 inhibition promoted effector and memory T cell activity, suggesting that, with optimal scheduling to prevent myeloid depletion, CDK4/6 inhibitors may be used to enhance and prolong BRAFi/MEKi-induced anti-tumor T cell immunity. Defining the mechanisms that underpin the clinical efficacy of these available therapies is a critical step forward in optimising novel combination and scheduling approaches to combat melanoma and improve patient outcomes.
  • Item
    Thumbnail Image
    Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine against Pancreatic Cancer
    Ali, Aisheh Ibrahim ( 2020)
    Pancreatic cancer is one of the most aggressive malignancies with an overall 5-year survival rate of <7%. Pancreatic cancer is highly resistant to radiotherapy and chemotherapy, and surgery is not feasible in most patients. In this thesis, I developed a new form of treatment for pancreatic cancer, based on immunotherapy. Adoptive cell transfer (ACT) is a promising form of cancer immunotherapy, which involves the isolation and reinfusion of tumour specific T lymphocytes into patients. While ACT can eliminate substantial burdens of some leukaemia, the ultimate challenge remains the eradication of large solid tumours and metastases for most cancers, including pancreatic cancer. In this thesis, an enhanced ACT treatment strategy for pancreatic cancer was developed, which was termed ‘ACTIV: Adoptive Cell Transfer Incorporating Vaccination’. This treatment included dual-specific T cells that expressed a chimeric antigen receptor (CAR) specific for the tumour antigen Her2, and a TCR specific for the melanocyte protein (pMEL, gp100). These dual specific T cells were termed ‘CARaMEL T cells’. CARaMEL T cells were administered together with an injection of a recombinant vaccinia virus vaccine expressing gp100 (VV-gp100). We hypothesized that adoptively transferred CARaMEL T cells would proliferate mediated by their gp100 TCR, in response to the VV-gp100 vaccine, and kill Her2+ tumours through their anti-Her2 CAR. Functional assays performed in vitro indicated that murine CARaMEL T cells mediated antigen-specific cytokine secretion and killing abilities against pancreatic cancer cells, and demonstrated potent proliferative ability in response to gp100 antigen, confirming our hypothesis. In addition, I found that ACTIV therapy inhibited tumour growth and prolonged the survival of mice bearing Her2+ subcutaneous murine pancreatic tumour. However, tumours usually relapsed after ACTIV therapy administration. Therefore, I directed my study to augment the anti-tumour activity of ACTIV therapy by the administration of either a histone deacetylase inhibitor (Panobinostat) or an immune agonist monoclonal antibody specific for CD40. Panobinostat significantly suppressed the growth of pancreatic cancer cells in vitro through apoptosis and cell cycle arrest. Also, Panobinostat significantly increased the growth suppression of pancreatic cancer cells mediated by CARaMEL T cells. In addition, I found that the combination of ACTIV therapy and Panobinostat significantly reduced the tumour growth and prolonged the survival of mice bearing Her2+ subcutaneous murine pancreatic tumours. In addition, administration of an agonist CD40 monoclonal antibody with ACTIV therapy significantly reduced the tumour growth and prolonged survival of mice bearing subcutaneous Her2+ pancreatic tumours through a T-cell-dependent immune mechanism. Finally, I explored the clinical translational potential for ACTIV therapy through the generation of human CARaMEL T cells expressing both a Her2-specific CAR and a gp100-TCR. In vitro functional assays indicated that human CARaMEL T cells mediated powerful and antigen-specific killing and cytokine secretion against Her2, together with a strong proliferative ability in response to gp100 antigen. In addition, I found that the administration of both human CARaMEL T cells and an adenovirus vaccine expressing gp100 led to potent anti-tumour activity against subcutaneous human Her2+ pancreatic tumours in immunodeficient mice.
  • Item
    Thumbnail Image
    Targeting the tumour microenvironment to enhance immunotherapy against cancer
    Oliver, Amanda Jane ( 2020)
    Cancer immunotherapies have shown astounding clinical results within the last decade, with complete eradication of advanced malignancies in certain cancer types, particularly melanoma and non-small cell lung cancer (NSCLC). These successes lead to clinical approval in multiple countries for checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies, and the award of the 2018 Nobel Prize in Physiology or Medicine to James P. Allison and Tasuku Honjo for their research on checkpoint blockade molecules. Despite this, many patients receive minimal benefit and focus has shifted to understanding how to predict and enhance immunotherapy responses. It is now well established that the tumour microenvironment (TME) is a major limiting factor for immunotherapy efficacy. Studies in mice using genetically identical tumour lines implanted in different tissues have demonstrated that the location of tumour growth can directly impact the composition of the TME and response to anti-cancer therapies. Retrospective analysis of checkpoint blockade treated patients’ revealed tissue-specific patterns of response, where metastases in certain anatomical sites were more responsive than others. To date studies investigating the tissue-specific influence on immunotherapy responses in vivo have limited clinical relevance, and studies in patients are minimal. In this thesis, we investigated the influence of the tissue-specific TME on immunotherapy responses in vivo and assessed tissue-specific patterns in the TME of breast cancer metastases from patient samples. First, we investigated a murine breast cancer model comparing responses of primary tumours to tumours in the liver and lungs as common metastatic sites to two immunotherapies, anti-PD-1/anti-CTLA4 and trimAb (anti-4-1BB, anti-CD40, anti-DR5). We reported that the 67NR tumour line growing in the lungs was resistant to immunotherapy, whereas the same tumour line growing in the mammary fat pad (MFP, primary tumour site) or liver could be completely eradicated in a portion of mice. Our analysis revealed that the resistance of lung tumours was independent of the tumour cells, vasculature or drug delivery and that the immune TMEs of lung and MFP tumours were distinct. Specifically, we demonstrated that lung tumours had a more immunosuppressive TME, with increased myeloid derived suppressor cells (MDSCs), decreased T cells and decreased activation of T cells and natural killer (NK) cells. Furthermore, upon depletion of various immune subsets alongside therapeutic intervention we found that NK cell depletion had a significant impact on lung tumours, but not MFP tumours. Taken together our data suggests that tumours grown in different tissues sculpt different TMEs with varied levels of immunosuppression and require different immune cell subsets, and perhaps different immune stimulants, for optimal anti-tumour responses. Following on from this study, we next wanted to assess responses to immunotherapy in vivo in models where multiple tumours in different anatomical sites were present. The rationale of this model was to investigate a more accurate representation of advanced cancer, where tumours have metastasised to multiple locations throughout the body. We hypothesised that co-existing tumours in different sites with disparate TMEs could influence immunotherapy responses compared to tumours existing alone. Our results indicated that the presence of a concomitant MFP tumour enhanced responses of lung tumours to trimAb or anti-PD-1/anti-CTLA4 therapies compared with mice bearing only lung tumours. We observed a decrease in lung metastasis burden in mice with simultaneous MFP tumour growth even before therapy commencement, which likely contributed to enhanced therapy responses. Upon interrogation we found that CD8+ T cells were responsible for the decrease in lung tumour burden and that the lungs of mice with co-existing MPF tumours had more tumour reactive CD8+ T cells. From our results, we hypothesised that the presence of a tumour in a more immunogenic location, such as the MFP, promoted T cell priming within the tumour draining lymph node (TdLN) at this site and led to a systemic response against distal tumours, such as tumours within the lungs. Lastly, we aimed to identify tissue-specific patterns within metastases from human tumours. Herein, we utilised metastatic tumour samples collected as part of the cancer tissue collection after death (CASCADE) rapid autopsy program from three estrogen receptor positive (ER+) breast cancer patients and one triple negative breast cancer (TNBC) patient. We analysed the immune profiles of these samples by transcriptomic and immunohistochemical (IHC) analyses. Our data demonstrated that, although there were potential tissue-specific differences within the TME, the most significant trend delineated immunological differences between ER+ and TNBC patients. These results confirmed previous research describing a higher immune infiltrate in TNBC samples compared with ER+ samples. Our research highlights the potential of investigating metastatic tumour samples however, future studies with separation of disease subtypes and increased sample sizes are needed to truly investigate tissue-specific patterns within the TME. In summary, the data presented in this thesis highlights the importance in further defining tissue-specific response patterns and mechanisms in patients to optimise current and future immunotherapies. Our results indicate that an in depth understanding of the tissue-specific TME could reveal novel treatment options in tumours that are non-responsive to current immunotherapies.