Sir Peter MacCallum Department of Oncology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    The role of Pim-1 in breast cancer metastasis
    Jupp, Lara ( 2017)
    Breast cancer is the most common cancer in women. Despite advances in treatment options, the spread of breast cancer to distant organs (metastasis) remains the major cause of morbidity and mortality in breast cancer patients. This is attributed primarily to the impairment of function in affected organs. Thus, there remains a vital need for better-targeted treatments that more effectively inhibit the development or progression of metastases. Pim-1 is a serine/threonine survival kinase that has been implicated in the development of metastasis in several haematological and solid cancers. However, little is known about its role in breast cancer. In our laboratory, we previously identified Pim-1 as upregulated in brain metastatic 4T1Br4 syngeneic mouse cells and tumours compared to parental 4T1 cells. This led us to propose that Pim-1 may play a role in mediating breast cancer brain metastasis. Therefore, the overall objective of this project was to examine the expression and functional role of Pim-1 in breast cancer metastasis, with a focus on organ-specific metastasis. We interrogated public databases to show that Pim-1 expression is low to absent in normal breast tissue and increased in breast tumour tissue. Furthermore we show that the murine (4T1Br4) and human (MDA-MB-231Br) brain metastatic breast cancer cell lines and tumours demonstrate the highest expression of Pim-1 mRNA and protein. To investigate the function of Pim-1 in breast cancer metastasis we tested the impact of inhibiting Pim-1, either by gene knock down using short hairpin RNAs or the pharmacological inhibitor SGI-1776, on the ability of 4T1Br4 and MDA-MB-231Br cells to migrate and invade in vitro. 4T1Br4 cells displayed increased migration and invasion propensity after Pim-1 knock down and this was coupled with a decrease in β4 integrin expression. Conversely, MDA-MB-231Br cells showed a decreased ability to migrate and invade after Pim-1 KD, as well as decreased cell surface expression of β1 and β3 integrins. Treatment with SGI-1776 dose-dependently decreased the ability of both 4T1Br4 and MDA-MB-231Br cells to migrate and invade, decreased cell surface expression of β3 integrin in 4T1Br4 cells, and both β1 and β3 integrins in MDA-MB-231Br cells. To examine the effect of Pim-1 inhibition in vivo, we assessed the metastatic spread of Pim-1 knock down MDA-MB-231Br cells in an experimental metastasis assay. After intracardiac injection of Pim-1 knock down cells, we observed a reduction in the number of circulating tumour cells and decreased bone metastasis, indicating a functional role for Pim-1 in breast cancer metastasis to the bone. Data from brain metastasis in this model were inconclusive. In summary, results from this project highlight the importance of Pim-1 in breast cancer metastasis and provide evidence that Pim-1 contributes to the migration and invasion of breast cancer cells both in vitro and in vivo, possibly via regulation of integrin expression, and indicate that Pim-1 is a relevant therapeutic target for the treatment of metastatic breast cancer.