Sir Peter MacCallum Department of Oncology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Investigating acquired resistance to Pol I transcription inhibitors for the treatment of haematologic malignancies
    Cameron, Donald Peter John ( 2018)
    Previous work from our group and others has demonstrated that CX-5461 (Senhwa Biosciences), a first-in-class small molecule inhibitor of RNA Polymerase I transcription of the ribosomal RNA genes, is effective at treating a range of different cancers both in vitro and in vivo, and is currently in clinical trials for haematologic and solid tumours. However, despite initial tumour clearance in response to CX-5461 treatment in preclinical murine models of cancer, mice eventually relapse with tumours that are resistant to further CX-5461 treatment. This thesis investigates the mechanisms via which the tumours can develop resistance to CX-5461 treatment and extrapolates this research to better understand: 1) how CX-5461 functions as an anti-tumour agent; 2) which pathways are required to mediate resistance to CX-5461; and 3) how resistance can be overcome with combination therapy. Using DNA exome sequencing, we found that Top2α is frequently mutated in tumours that have acquired resistance to CX-5461 treatment in vivo. Functional characterization of a Top2α mutant cell line demonstrated that Top2α expression and activity were reduced in these cells. Indeed, we found that knockdown of Top2α was sufficient to cause resistance to CX-5461. This implies that Top2α could provide a novel biomarker for CX-5461 response in clinical trials. Further investigation of the CX-5461 resistance mechanism uncovered that CX-5461 also acts as a Top2 inhibitor in addition to its ability to inhibit rDNA transcription. However, unlike common chemotherapeutic Top2 inhibitors which kill cells by causing genome-wide DNA damage thereby initiating a DNA damage response, CX-5461 treatment causes comparatively fewer DNA breaks enriched at the ribosomal DNA promoter loci. Thus, CX-5461 is able to kill tumour cells via the DNA damage response in the absence of extensive DNA damage thereby potentially limiting the cytotoxicity of drug treatment. Together, the work presented in this thesis identifies novel mechanisms of action and resistance to CX-5461. We propose that CX-5461 and other second-generation inhibitors of RNA Polymerase I and Top2α may provide a viable, less genotoxic alternative to classic Top2 inhibitors.