School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Interacting dark matter: decay and bremsstrahlung processes
    Galea, Ahmad Jacob ( 2013)
    Though there is substantial indirect astrophysical evidence for the existence of dark matter (DM), it has yet to be directly detected. Consequently, little is known about its internal structure. It is possible that there is a small but finite non-gravitational interaction between dark matter and the Standard Model (SM) which may have observable consequences. The purpose of this thesis is the exploration of some of these interactions and consequences. In particular we consider the possibility that dark matter is unstable on long timescales, as motivated by discrepancies between simulation and observation of structure on sub-galactic scales. We also consider the consequences of electroweak radiative corrections to annihilation processes involving dark matter, as such corrections are necessarily present in many well motivated models. We consider this possibility in the contexts of dark matter annihilation in galactic halos, and production in colliders. Chapter 1 provides an introduction to dark matter, including some of its astrophysical and particle aspects. As a motivation for the following sections, we begin by briefly outlining some of the observational evidence for dark matter. We go on to discuss structure formation, and the cold dark matter distribution on galactic scales. Next we discuss the possibility of non-gravitational interactions involving dark matter, including decay, annihilation, scattering off nuclei, and production. Finally we discuss the determination of the relic abundance in the early Universe, including a discussion of models involving coannihilation. Late decaying dark matter has been proposed as a solution to the small scale structure problems inherent to cold dark matter cosmology. In these models the parent dark matter particle is unstable, and decays into a daughter with near degenerate mass, plus a relativistic final state. In Chapter 2 we review the observational constraints on decaying dark matter, and construct explicit particle physics models to realize this scenario. To achieve this, we introduce a pair of fermionic dark matter candidates and a new scalar field, which obey either a Z4, or a U(1) symmetry. Through the spontaneous breaking of these symmetries, and coupling of the new fields to standard model particles, we demonstrate that the desired decay process may be obtained. We also discuss the dark matter production processes in these models. In Chapter 3 we investigate electroweak radiative corrections to dark matter annihilation into leptons, in which a W or Z boson is also radiated. In many dark matter models the annihilation rate into fermions is helicity suppressed. We demonstrate that bremsstrahlung processes can remove this helicity suppression, causing the branching ratios Br($\ell \nu W $), Br($\ell^+\ell^-Z$), and Br($\bar\nu \nu Z$) to dominate over Br($\ell^+\ell^-$) and Br($\bar\nu \nu$). We find this effect to be most significant in the limit where the dark matter mass is nearly degenerate with the mass of the boson which mediates the annihilation process. Finally, in Chapter 4, we investigate a mono-Z process as a potential dark matter search strategy at the Large Hadron Collider (LHC). In this channel a single Z boson recoils against missing transverse momentum attributed to dark matter particles, $\chi$, which escape the detector. For illustrative purposes we consider the process $q\bar{q} -> \chi\chi Z$ in a toy dark matter model, where the Z boson is emitted from either the initial state quarks, or from the internal propagator. We look for muonic decays of the Z, showing the Standard Model backgrounds to this process to be easily removable with modest selection cuts. We compare signal with Standard Model backgrounds and demonstrate that there exist regions of parameter space where the signal may be clearly visible above background in future LHC data.
  • Item
    Thumbnail Image
    Searching for the Light Supersymmetric Top Quark with the ATLAS experiment
    Phan, Anna Thuy Trang ( 2011)
    The nature of dark matter and the source of the matter-antimatter asymmetry in the universe are two of the most important questions in particle physics and cosmology. The current Standard Model of particle physics, while being a very successful description of the observed fundamental particles and their interactions, cannot fully account for either of these phenomena. Theoretical extensions of the Standard Model, however, possibly can. One such extension is the Minimal Supersymmetric Standard Model (MSSM). This thesis begins by exploring the MSSM parameter space in which the matter- antimatter asymmetry of the universe is dynamically generated through electroweak baryogenesis. In this scenario, one of the supersymmetric partners to the top quark, the light stop quark, must be lighter than the top quark. It is found that this parameter space region is highly constrained by experimental limits on the electric dipole moment of the electron and the branching ratio of a bottom quark into a strange quark and a photon. If the additional requirement of matching the observed dark matter abundance by the relic density of the lightest supersymmetry particle is necessitated, the allowed MSSM parameter space is further constrained. The focus of the thesis then moves to the investigation of the collider phenomenology of supersymmetric electroweak baryogenesis, in particular, the evaluation of the discovery potential of light stop quark pair production at the LHC using the ATLAS experiment. This study assumes a light stop decay topology involving the lightest chargino and neutralino where the visible final state products mimic those from top quark pair production. Feasibility studies are performed for proton-proton collisions at centre of mass energies of 10 TeV and an integrated luminosity of 1/fb, concentrating on the dileptonic and semileptonic decay channels where there are two or one charged leptons in the final state. It is found that signal points with stop masses less then 120 GeV and stop-neutralino mass differences greater than 60 GeV have the greatest discovery potential in the dileptonic decay channel, while the semileptonic decay channel is swamped by backgrounds and requires detailed understanding of the detector and backgrounds in order to extract a signal. Finally, a preliminary study is conducted on 41.4/pb of data collected at collisions with centre of mass energies of 7 TeV in the dielectron decay channel, focusing on the understanding of selection variables and backgrounds.
  • Item
    Thumbnail Image
    Discovery potential of neutral MSSM Higgs bosons decaying to tau-lepton pairs in the ATLAS experiment
    Davey, William Edwin ( 2011)
    The Large Hadron Collider (LHC) is the highest energy particle collider ever built. It recently began operation at CERN and will probe physics at unprecedented scales. ATLAS is a particle detector located at one of the collision points on the LHC ring and is designed to be sensitive to the wide range of physics that could be produced. The primary objective of the LHC experiments is to determine the mechanism of electroweak symmetry breaking, of which many theoretical models exist. In the Minimal Supersymmetric Standard Model (MSSM), electroweak symmetry breaking is achieved through the Higgs mechanism, however, the Higgs sector must be extended with respect to the Standard Model and contains five physical Higgs bosons. The discovery potential of the MSSM Higgs bosons in ATLAS has been evaluated in previous studies, demonstrating adequate sensitivity for discovery or exclusion over a large region of the parameter space. However, these studies were performed using now outdated software, without an estimation of the expected systematic uncertainties or the inclusion of data-driven background estimation procedures. In this thesis, the discovery potential of the neutral MSSM Higgs bosons when decaying to tau-lepton pairs in the ATLAS experiment is evaluated. One tau is required to decay leptonically while the other is required to decay hadronically. Higgs boson mass hypotheses in the range 150 GeV - 800 GeV are considered. The study assumes a proton-proton collision energy of 14 TeV and an integrated luminosity of 30/fb. The expected systematic uncertainty on the background measurement is evaluated and included in the calculation of the discovery potential. Data-driven estimation techniques are developed for the W+jets and QCD di-jet backgrounds. The contributions of all signal and background processes are estimated using Monte Carlo simulated event samples. The discovery potential is interpreted in the mh-max benchmark scenario, and is presented in the mA-tan(beta) plane. A small degradation in performance with respect to the previous studies is found for Higgs boson masses below 450 GeV due to the inclusion of systematic uncertainties. It is confirmed that a large fraction of the parameter space will be accessible to the ATLAS experiment, which will be able to probe far beyond the regions already excluded by the LEP and Tevatron experiments. Two separate studies are also included, describing contributions to the modelling of hadronic tau reconstruction in the ATLAS fast simulation packages ATLFAST-I and ATLFAST-II. Firstly, a complete parameterisation of the calorimeter-based hadronic tau reconstruction for use in ATLFAST-I is presented. Secondly, the validation of the track-based hadronic tau reconstruction in ATLFAST-II is presented, including the extraction of correction terms to match the performance in ATLFAST-II to the standard ATLAS simulation.