School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Topological quantum computing with magnet-superconductor hybrid systems
    Crawford, Daniel ( 2023-11)
    Developing a practical general purpose quantum computer is this eras moonshot project, enabling fundamental advances in simulating quantum many-body systems, as well as promising new classical-computer-beating algorithms with applications in cryptography, meteorology, economics, and logistics. Current quantum processors struggle with short coherence times --- meaning that the fragile quantum bits (qubits) break down --- resulting in high error rates. Thus complicated or long calculations are prohibitive to run on current devices. Quantum error correction could be the solution, however, many physical qubits are required to encode a single logical qubit. Thus a massive scaling up of hardware is required to realise even a modest number of fault-tolerant logical qubits. Over the past twenty years the idea of engineering an inherently fault-tolerant, or topological, quantum computer has been developed. In principle, these fault-tolerant qubits do not decohere due to a topological protection; the information is distributed across a physical system such that local perturbations do not damage the whole information encoding. Majorana zero-modes, characteristic quasiparticles in topological superconductors, have emerged as a leading candidate for the building blocks of a fault-tolerant qubit. Many experimental platforms which might yield Majorana zero-modes have been proposed, but as of writing unambiguous evidence for Majorana zero-modes and topological superconductivity has not been presented in any experiment. Here I study magnet-superconductor hybrid (MSH) systems, which involve networks of magnetic adatoms assembled on a superconducting surface via lateral atom manipulation using a scanning tunneling microscope tip. These systems are clean and crystalline, and thus are an ideal platform for experiments. I present compelling theoretical and experimental evidence for topological superconductivity in Mn and Fe chains on Nb(110). However, the systems investigated so far experimentally have long localisation lengths, resulting in hybridised Majorana modes. Because these modes cannot be used to build a fault-tolerant qubit, I theoretically investigate several extensions to these experiments. I propose constructing quasi one-dimensional chains consisting of several rows of magnetic adatoms, with ferromagnetic order in one crystalline direction and antiferromagnetic in the other. I also suggest engineering the Nb(110) surface with an alloy to dramatically increase the Rashba splitting. Both of these proposals are readily accessible in experiment, and could yield non-hybridised Majorana zero-modes. Having established the viability of the platform, I introduce a numerical apparatus for studying many-body nonequilibrium superconducting physics. While this is generic and can be applied to any superconducting problem, here I use it to study topological quantum computing on a MSH platform. I first show that quantum gates can indeed be implemented via braiding Majorana zero-modes. I then show how single-molecule magnets can be use to initialise and readout MSH qubits. I build on this protocol and introduced a dressed Majorana qubit, which combines an MSH network with single-molecule magnets. These could be easier to initialise and readout than a conventional Majorana qubit.
  • Item
    No Preview Available
    Deterministic implantation of donor ions in near-surface nanoarrays for silicon quantum computing
    Robson, Simon Graeme ( 2023-08)
    Remarkable theoretical and experimental progress has been achieved with donor-based silicon quantum computing architectures in the last decade, firmly cementing this implementation as one of the forerunners in the race to build the first large-scale quantum computer. By employing near-surface donor atoms (P, As, Sb, Bi) as the storage medium, both their nuclear and electronic spin states can be used to encode quantum information. Silicon is an excellent host material, having the advantage that donor atoms can easily be incorporated into its lattice, as well as being able to be isotopically enriched into 28Si, giving donor spin coherence times in excess of 30 s. Despite a significant number of experimental challenges, the end goal of creating a near-surface entangled donor array to enable multi-qubit operations is in sight. The aim of this work is to address some significant recent advances towards this goal through the use of directed implantation of single donor ions. Ion implantation has previously been shown to be a valid method for introducing donor-qubits into silicon, and for decades has been a well-established fabrication technique in the classical semiconductor industry. In this work, it is shown that by employing silicon-based active detection substrates connected to an ultra-low noise charge-sensitive preamplifier, single donor ions can be deterministically implanted at depths between 10 - 20 nm with a detection confidence exceeding 99.8%. The recent acquisition of an in-situ stepped nanostencil extends this concept further to allow the controlled placement of single donors to a lateral precision of around 50 nm. Through the use of a step-and-repeat procedure, the ability to form two-dimensional qubit nanoarrays with this system is demonstrated. With the technique readily capable of scaling up to hundreds of qubits or more, this represents a significant milestone towards the realisation of a top-down solid state qubit architecture. A complementary method for single donor placement in silicon is also given, again using ion implantation. It involves the use of a focused ion beam instrument that has been modified to include a keV electron-beam-ion-source to give access to a large selection of ion species, focused to a 180 nm spot size. By integration of the same high-confidence single ion detection technology, it is shown that this technique is also capable of creating large-scale donor arrays in silicon, but without the need for a physical mask. Its use as not just a single ion implanter, but also a novel instrument for near-surface characterisation of semiconductors is also presented. The system's functionality is demonstrated through the identification of fabrication faults in a silicon-based device that otherwise may have gone undetected through conventional characterisation methods. The adaptation of the focused ion beam technique into an efficient method for creating micro-volumes of isotopically pure 28Si is also explored. This is an important area of focus required to achieve ultra-long qubit coherence times, with the results of a preliminary characterisation confirming the technique's suitability. Finally, adapting the single ion detection technology to demonstrate a new approach for performing high-resolution Rutherford backscattering spectrometry is also presented. Some major advantages include a small physical detector footprint and ease of integration into existing beamline structures. In keeping with the overall theme of this study, the system is used to analyse samples pertinent to silicon donor quantum computing, such as shallowly implanted donors and enriched 28Si wafers. The series of experiments performed in this thesis thus represent some significant steps towards achieving the scalable fabrication of a donor-based silicon quantum computer.