School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Designing and assessing model independent tests of the DAMA modulation
    Zurowski, Madeleine Jane ( 2022-12)
    Particulate dark matter is a long hypothesised solution to various astrophysical observations seemingly at odds with a completely luminous universe. Despite the success of dark matter in explaining these observations, to date physicists have been unable to conclusively observe its interactions with Standard Model matter directly. This thesis will focus on trying to understand the results from the DAMA collaboration, which for the past two decades has reported a modulation signal consistent with dark matter, but in tension with other null experimental results under the usual dark matter assumptions. This study demonstrates the need for a model independent test of this signal to understand its origin, the requirements of such a test, and how different dark matter experiments can be compared or assessed to understand how sensitive they are to this elusive signal. This thesis examines such a study through the lens of a dark matter detector currently under construction in Australia: SABRE South. In particular, it will focus on purification techniques that can be used to produce benchmark low background equipment, detailed simulation studies that can guide the design of SABRE South, and the detailed analysis that must take place to understand how sensitive and or competitive SABRE South will ultimately be. It will also touch on interesting phenomenology studies that can be conducted with such a detector; examining non-standard or unusual dark matter models and signatures that are produced by relaxing the assumptions typically made about its fundamental nature, and distribution with the galaxy.
  • Item
    Thumbnail Image
    Measurement of the branching fractions of $\bar{B}^{0}\to D^{*+} h^{-}$ decays at the Belle experiment and development of a global particle vertex fitting algorithm for Belle~II
    Krohn, Jo-Frederik ( 2021)
    In this thesis high precision QCD-factorisation tests were performed. The branching ratios B(B → D π ) = (2.67±0.02±0.09)×10 and B(B → D K ) = (2.27±0.06±0.08)×10−4 were measured using (771.58±10.56)×106 B-meson pairs recorded by the Belle experiment. Both values are in tension with the theoretical expectation. The ratio of the branching ratio is measured in a way that allows for the cancellation of the systematic uncertainties arising from the D∗-meson reconstruction; the value of RK/π = B(B → D K )/B(B → D π ) = (8.41±0.24±0.13)×10 was found. Both B(B → D π ) and B(B → D K ) have shown deviations from the prediction, this suggests that the estimation of the Feynman diagrams contributing to the predictions may be inaccurate. The new measured branching ratios were used to perform a high precision QCD factorisation test by measuring ratios with respect to semi-leptonic branching ratios at fixed momentum transfers for different particle species. A deviation for the ratio Γ(B → D h )/dΓ(B → D l ν ̄)/dq of 16% from theoretical predictions was found, suggesting large non-factorisable contributions and/or new physics contributions. Furthermore, SU(3)-symmetry was tested by measuring ratios for pions and kaons of a21(K)/a21(π) = 1.05±0.05 as well as for different particle species. The found value is consistent with unity and therefore no evidence for SU(3)-symmetry breaking effects was found in this test to 5% precision. Thus, for RK/π one can rule out SU(3)- symmetry breaking effects as an explanation for the deviation. Finally, a new vertex fitting algorithm and its implementation for the Belle II software framework was reported. It can improve D∗-meson reconstruction, is com- putationally very efficient and is now the standard vertex fitting tool of the Belle II experiment.