School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Observational methods towards constraining the chemical evolution of galaxies
    Cameron, Alex James ( 2020)
    Understanding the array of physical processes that have shaped galaxy assembly remains one of the most fundamental pursuits in astrophysics. Gas in galaxies is enriched with heavy elements via stellar nucleosynthesis, but chemical abundances (``metallicity'') are also shaped by galaxy-scale processes including gas accretion, feedback-driven outflows, radial gas flows, interactions, and mergers. Metallicity measurements therefore afford one of our most powerful observational probes of galaxy evolution. In this thesis I explore the performance of observational methods for constraining (i) gas-phase metallicity in galaxies, and (ii) host dark matter halo masses of galaxies; the latter of which is critical to the physics of gas flows due to its contribution to the gravitational potential well of galaxies. A particular focus is the improved understanding of systematic uncertainties near instrumental limits, which will be vital to maximise the impact of surveys conducted with future facilities. Galaxy clustering is an efficient approach for drawing statistical connections between galaxies and their host dark matter haloes, however traditional methods are challenging to apply at z > 2 where imaging survey volumes are limited. I instead apply a counts-in-cell approach to photometric z ~ 2 candidates from a random-pointing Hubble Space Telescope survey, showing mean counts of N > ~5 per field are capable of constraining the large scale galaxy bias. The James Webb Space Telescope will achieve comparable number counts out to z ~ 8, and thus a similar JWST survey could place novel constraints on the halo masses of galaxies in the epoch of reionization. Global metallicities in low-mass galaxies afford important constraints on the impact of feedback-driven outflows on galaxy evolution. However at high-z, obtaining the requisite emission line measurements is observationally challenging. I use Keck/MOSFIRE spectroscopy to explore prospects for extending z ~ 1 - 2 metallicity measurements to lower masses. I find the dominant source of uncertainty arises from reduced number of emission lines as opposed to lower signal-to-noise, even at the detection limit. JWST/NIRSpec will revolutionise high-z metallicity studies due to the large suites of emission lines it will be able to assemble. Electron temperatures (T_e) measured with auroral lines are an important baseline in metallicity studies. However the faintness of auroral lines has hitherto limited spatially resolved T_e studies. I report two separate studies based on mapping auroral lines in integral-field spectroscopy (IFS) of low-z galaxies. Measurements of auroral lines in the SAMI Galaxy Survey afford new insights into the effects of ionisation parameter variations on recovered metallicity gradients. Applying these principles to Keck/KCWI IFS data of an edge-on disk galaxy, I measure an extra-planar temperature gradient and present preliminary evidence for extra-planar metallicity variations.
  • Item
    Thumbnail Image
    Simulations of source recovery and completeness in galaxy surveys at high redshift
    Carrasco Nunez, Daniela Patricia ( 2018)
    The search for and characterisation of galaxies at high-redshift is a very active topic in Astrophysics. Thanks to advances in observations from space, the redshift frontier is approaching the epoch of formation of first generation objects. Thus, these samples of galaxies can give us insight into the processes that govern galaxy formation and evolution. One of the key observables used to characterise galaxy populations throughout the cosmic history is their luminosity function (number of galaxies per unit luminosity per unit volume), which requires knowledge and characterisation of the completeness and selection functions of a survey, in addition to the catalogue of discovered objects. In this thesis, we present a search for high-redshift galaxies (redshift z > 6) in two in the Hubble Space Telescope surveys, the Brightest of Reionizing Galaxies Survey (BoRG), and the Reionization Lensing Cluster Survey (RELICS) using a photometric selection technique (the Lyman break dropout selection). We aim at using the resulting galaxy candidates to estimate a new measurement of the luminosity function at z ~ 10. To achieve that, we develop GLACiAR, an open Python-based tool available on GitHub, which is designed to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging datasets aimed at searching for high-redshift galaxies through the Lyman Break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate. We finally apply GLACiAR to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z ~ 10 galaxies). Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for artificial sources can impact completeness estimates.