School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Towards Automating the Design and Optimisation of Particle Accelerators
    Zhang, Xuanhao ( 2023-06)
    The question of efficiency and optimality of accelerator lattice structures was investigated in this thesis. Within the context of circular accelerators for hadron therapy, an analysis on the design methodology of existing compact circular acceler-ators was carried out. This analysis prompted the design of a novel lattice based on two double bend achromat arcs as an alternative to conventional periodic cell struc-tures. The feasibility to perform slow extraction for hadron therapy purposes was demonstrated using the proposed lattice. The extraction efficiency was optimised by tuning the lattice optics. In the second half of this thesis, an automated design and optimisation algorithm was proposed. This algorithm was developed as a general purpose lattice design tool. The development process examined three optimisation routines including the Simulated Annealing algorithm, a simple genetic algorithm, and the Non-dominated Sorting Genetic Algorithm (NSGA). Three encoding methods were developed to represent the accelerator lattice for use with the optimisation routines. Namely, the finite slicing encoder, the neural network encoder, and the matrix encoder. It was found that the combination of NSGA-III algorithm and the matrix encoder was the most efficient method for exploring the feasible parameter space for a generalisable lattice design problem.
  • Item
    Thumbnail Image
    Background estimation studies for hadronically decaying tau leptons at the ATLAS experiment
    Zhang, Xuanhao ( 2018)
    This project aims to develop a data-driven technique for the estimation of the dominant background contribution in the inclusive search for new physics signals where equally charged lepton pairs are featured in the final state and where an hadronically decaying tau lepton can be found in a pair. The studies presented in this thesis were performed with data collected by the ATLAS experiment. A data driven technique has been developed for the abundant background of jets originated from the hadronisation of quarks or gluons which are mis-identified as hadronically decaying tau leptons. Mis-identification weighting factors have been measured for the extrapolation of this background into the signal region of the analysis and have been validated using a selection independent with respect to the the signal region. Systematic uncertainties have also been estimated. The work presented in this thesis will be incorporated in a general extrapolation technique within the ATLAS experiment aiming to be used by all ATLAS searches featuring hadronic tau decays in the final state.