School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Physics beyond the standard model
    Clarke, Jackson David ( 2016)
    In this Thesis we present a collection of original bodies of work pertaining to a number of theoretical/phenomenological questions of the Standard Model, as studied from a "bottom-up" perspective. In Chapter 2: Higgs Sector, we consider the implications of extending the Standard Model Higgs sector by a very light (100 MeV < $m_s$ < $m_h/2$) real singlet scalar field. We identify the regions of parameter space which experiments at the Large Hadron Collider are uniquely sensitive to. There is a strong focus on low background displaced decay signatures. In Chapter 3: Naturalness, we show how a Higgs mass sensitivity measure can be rigorously derived from Bayesian probability theory. We use this measure to constrain the masses of various fermionic and scalar gauge multiplets, obtaining naturalness bounds of O(1-100) TeV. In Chapter 4: Neutrino Mass, we write down the minimal UV completions for all the Standard Model dimension 7 operators which might be responsible for the radiative generation of Majorana neutrino masses. A detailed collider study of a one-loop realisation is performed. In Chapter 5: Baryon Asymmetry of the Universe, we present a proof that the three-flavour Type I seesaw model cannot provide an explanation for neutrino masses and the baryon asymmetry of the Universe via hierarchical leptogenesis without introducing a Higgs naturalness problem. We then describe a minimal extension (the "$\nu$2HDM") which can avoid this conclusion. In Chapter 6: Strong CP Problem, we describe a very minimal model (the "$\nu$DFSZ") which can explain neutrino masses, the baryon asymmetry of the Universe, the strong CP problem, and dark matter, without introducing a naturalness problem for the Higgs. This model serves as an existence proof that weakly coupled high scale physics can naturally explain phenomenological shortcomings of the Standard Model. Lastly, in Chapter 7: Dark Matter, we consider the implications of a class of self-interacting "plasma dark matter" models for direct detection experiments. A number of qualitatively unique signatures (when compared to single component collisionless dark matter) are identified. We emphasise the prediction for a signal which modulates with sidereal day.