School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Quasar Broad Emission Line Regions and Gravitational Microlensing
    Kenyon, Clare Emily Guinane ( 2023-08)
    This thesis has focussed on hydrogen and helium emission line generation in the Broad Emission Line Region (BELR) of quasars and also on the gravitationally lensed quasar LBQS1009-0252. Quasars are a class of galaxy characterised by an active nuclear region in which a high rate of accretion onto a central supermassive black hole results in the release of vast amounts of broadband energy over a prolonged period of time. These incredible luminosities—often up to 100,000 times that of a standard galaxy—make quasars some of the most distant, and therefore earliest, sources ever observed in the universe. The relatively tiny size of the innermost region, however, precludes direct observation, and so the physics and geometry of quasars remains enigmatic. Emitted by the accretion disk, light interacts with surrounding gasses in the BELR—so-named because light which is reprocessed and re-emitted from this region tends to be significantly broadened due to wholescale Doppler motions of the gas. As the first gas to ‘see’ light from the accretion disk, understanding and constraining the nature and dynamics of the BELR remains of interest in many astrophysical fields. Following methods pioneered by Ruff (2012), microphysical simulations (such as those produced by the photoionisation code, Cloudy) can be combined with observed spectral data of real sources to model hydrogen line emission from the BELR. This research has confirmed and built further upon the methods presented in Ruff (2012) through the use of updated code and new, high-quality NIR spectral data of 14 quasar sources acquired from the Flamingos-2 (F2) instrument on Gemini South at the Gemini Observatory. The thesis has also gone a step beyond the original method and includes the modelling and analysis of helium emission lines for the first time. Broadly, the results lend support to the conclusions presented in Ruff (2012): hydrogen lines tend to be produced optimally in regions of low incident ionising flux and high gas number density. Helium lines also appear to follow this trend, clustering in a similar parameter space, although there appears to be a tendency towards a flatter distribution across the value for maximum gas number density. This suggests that despite similarities in their physical production and spectral appearance, there are some slight differences in the behaviour of hydrogen and helium emission lines in the BELR, and it is prudent to analyse them separately where possible. This thesis also examined the double-image gravitationally lensed quasar, LBQS1009-0252, via new and relatively high-resolution data from the Gemini Multi-Object Spectrograph (GMOS) at Gemini Observatory. The project investigated both the emission and absorption lines present in the spectra of components A and B, seeking to better understand the spectral differences apparent between the two images. The analysis confirms that the LBQS1009-0252 system likely consists of two images of the same, gravitationally lensed background quasar source, with a third component, LBQS1009-0252C, most likely a foreground and physically unrelated quasar. A comparison and analysis of the overall spectra and emission lines attempts to separate the effects of different light paths through the lensing galaxy, previously identified at z~0.869. A combination of differential extinction due to dust in the macrolens plus a minor component of microlensing is a reasonable explanation for the origin of chromaticity between the spectra of the two component images. The new dataset was of high resolution, allowing for the identification of many more absorption lines than had previously been catalogued. These have been matched to those previously classified as belonging to the lensing galaxy and another known absorber situated at z~1.627. Newly-observed lines were analysed to identify likely absorption species candidates, showing that the presence of at least one more intervening absorption system at z~1.116–1.117 is highly likely.
  • Item
    Thumbnail Image
    Observational methods towards constraining the chemical evolution of galaxies
    Cameron, Alex James ( 2020)
    Understanding the array of physical processes that have shaped galaxy assembly remains one of the most fundamental pursuits in astrophysics. Gas in galaxies is enriched with heavy elements via stellar nucleosynthesis, but chemical abundances (``metallicity'') are also shaped by galaxy-scale processes including gas accretion, feedback-driven outflows, radial gas flows, interactions, and mergers. Metallicity measurements therefore afford one of our most powerful observational probes of galaxy evolution. In this thesis I explore the performance of observational methods for constraining (i) gas-phase metallicity in galaxies, and (ii) host dark matter halo masses of galaxies; the latter of which is critical to the physics of gas flows due to its contribution to the gravitational potential well of galaxies. A particular focus is the improved understanding of systematic uncertainties near instrumental limits, which will be vital to maximise the impact of surveys conducted with future facilities. Galaxy clustering is an efficient approach for drawing statistical connections between galaxies and their host dark matter haloes, however traditional methods are challenging to apply at z > 2 where imaging survey volumes are limited. I instead apply a counts-in-cell approach to photometric z ~ 2 candidates from a random-pointing Hubble Space Telescope survey, showing mean counts of N > ~5 per field are capable of constraining the large scale galaxy bias. The James Webb Space Telescope will achieve comparable number counts out to z ~ 8, and thus a similar JWST survey could place novel constraints on the halo masses of galaxies in the epoch of reionization. Global metallicities in low-mass galaxies afford important constraints on the impact of feedback-driven outflows on galaxy evolution. However at high-z, obtaining the requisite emission line measurements is observationally challenging. I use Keck/MOSFIRE spectroscopy to explore prospects for extending z ~ 1 - 2 metallicity measurements to lower masses. I find the dominant source of uncertainty arises from reduced number of emission lines as opposed to lower signal-to-noise, even at the detection limit. JWST/NIRSpec will revolutionise high-z metallicity studies due to the large suites of emission lines it will be able to assemble. Electron temperatures (T_e) measured with auroral lines are an important baseline in metallicity studies. However the faintness of auroral lines has hitherto limited spatially resolved T_e studies. I report two separate studies based on mapping auroral lines in integral-field spectroscopy (IFS) of low-z galaxies. Measurements of auroral lines in the SAMI Galaxy Survey afford new insights into the effects of ionisation parameter variations on recovered metallicity gradients. Applying these principles to Keck/KCWI IFS data of an edge-on disk galaxy, I measure an extra-planar temperature gradient and present preliminary evidence for extra-planar metallicity variations.
  • Item
    Thumbnail Image
    The host galaxies of high-redshift quasars
    Marshall, Madeline Anne ( 2020)
    In the early Universe, we observe supermassive black holes with masses of up to a billion times the mass of the Sun, accreting at or even above the Eddington limit. These high-redshift quasars are some of the most luminous objects in the Universe, and raise many questions about the formation and growth of the first black holes. Investigating their host galaxies provides a useful probe for understanding these high-redshift quasars. In the local Universe, there are clear correlations between the mass of a supermassive black hole and the properties of its host galaxy, indicating a black hole--galaxy co-evolution. Exploring how these black hole--host relations evolve with redshift can give valuable insights into why these relations exist. Studying the host galaxies of high-redshift quasars thus provides vital insights into the early growth of supermassive black holes and the black hole--galaxy connection. In this thesis I use three techniques to study the host galaxies of high-redshift quasars: the Meraxes semi-analytic model, the BlueTides hydrodynamical simulation, and observations with the Hubble Space Telescope. Meraxes is a semi-analytic model designed to study galaxy formation and evolution at high redshift. Using this model, I study the sizes, angular momenta and morphologies of high-redshift galaxies. I also use Meraxes to study the evolution of black holes and their host galaxies from high redshift to the present day. The model predicts no significant evolution in the black hole--host mass relations out to high redshift, with the growth of galaxies and black holes tightly related even in the early Universe. I also examine the growth mechanisms of black holes in Meraxes, finding that the majority of black hole growth is caused by internal disc instabilities, and not by galaxy mergers. I then use the BlueTides cosmological hydrodynamical simulation to investigate the detailed properties of quasar host galaxies at z=7. I find that the hosts of quasars are generally highly star-forming and bulge dominated, and are significantly more compact than the typical high-redshift galaxy. Using BlueTides I make predictions for observations of quasars with the James Webb Space Telescope, finding that detecting quasar hosts at these redshifts may be possible, but will still be challenging with this groundbreaking instrument. Finally, I use observations from the Hubble Space Telescope to obtain deep upper limits on the rest-frame ultraviolet luminosities of six z~6 quasars. I also detect up to 9 potential companion galaxies surrounding these quasars, which may be interacting with their host galaxies. Observations with the upcoming James Webb Space Telescope are needed to detect quasar host galaxies in the rest-frame ultraviolet and optical for the first time.