School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Massive Black Holes
    Paynter, James Robert ( 2023-08)
    Black holes are one of the most fundamental astrophysical objects in our universe. In this thesis I look at massive black holes (MBH) with masses $10^{4}-10^{10}$ times that of our sun. In particular, I investigate how their gravitational influence distorts photon trajectories and describe how this can be used to study MBH. This phenomena, known as gravitational lensing, results in changes in shape and brightness of the images of the source as seen by a distant observer. The most striking manifestation of gravitational lensing is multiple images, known as \emph{strong} gravitational lensing. Strong gravitational lensing also results in the magnification of one or more of the images above that which would have been observed in the absence of deflecting matter. The number of cosmological black holes (MBH that do not belong to a galaxy core) is not well constrained. Gravitational lens statistics is one of the few ways to probe their number density. The fraction of sources experiencing strong gravitational lensing (multiple-image formation) is proportional to the number density of gravitational lenses which are able to form such images. GRBs are short bursts of $\gamma$-rays which signify the birth of a stellar mass black hole. Gravitational lensing of time-series data (light-curves) manifests as repetition of the primary signal as a lensed ``echo''. I describe the Bayesian parameter estimation and model selection software \pygrb{} which I wrote for this thesis. I use \pygrb{} to analyse GRB lens candidates from the Burst And Transient Source Experiment (BATSE) GRB catalogue to determine how similar the putative GRB lensed echo images are. I find one convincing candidate -- GRB~950830 -- which passes all our tests for statistical self-similarity. I conclude that GRB~950830 was gravitationally lensed by a $(1+z_l)M_l\approx\unit[5.5\times 10^4]{\msun}$ intermediate mass black hole (IMBH). Furthermore, based on the occurrence rate of this lensing event, I am able to estimate that the density of IMBH in the universe is $n_\textsc{imbh}=\unit[6.7^{+14.0}_{-4.8}\times10^{3}]{Mpc^{-3}}$. I also study the merger of black holes, looking at the recoiling quasar E1821+643 (E1821 hereafter). E1821 has a mass of $\mbh \sim \unit[2.6\times10^9]{\msun}$ and is moving with a line-of-sight velocity $v_\text{los}\approx \unit[2,070\pm50]{\kms}$ relative to its host galaxy. I use Bayesian inference to infer that E1821+643 was likely formed from a binary black hole system with masses of $m_1\sim 1.9^{+0.5}_{-0.4}\times \unit[10^9]{M_\odot}$, $m_2\sim 8.1^{+3.9}_{-3.2} \times \unit[10^8]{M_\odot}$ (90\% credible intervals). Given our model, the black holes in this binary were likely to be spinning rapidly with dimensionless spin magnitudes of ${\chi}_1 = 0.87^{+0.11}_{-0.26}$, ${\chi}_2 = 0.77^{+0.19}_{-0.37}$. I find that E1821+643 is likely to be rapidly rotating with dimensionless spin ${\chi} = 0.92\pm0.04$. Recoiling black holes are one method to populate the universe with massive black holes, however, these are expected to be rare. Massive black holes carry with them a tight cluster of stars and stellar remnants. These stars will pass through the optical caustic(s) of the black hole occasionally, which may lead to observable brightening of the star. Magnifications of greater than one million can easily be achieved, which I term ``Gargantuan Magnification Events'' (GMEs). I estimate the rate at which this lensing occurs, including the distribution of magnifications and event durations. I consider GMEs of pulsars in orbit of MBH as a possible generating mechanism for Fast Radio Bursts (FRBs). I find that pulsar GMEs are able to account for $0.1-1\%$ of the total FRB rate as observed by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) radio observatory. These seemingly unrelated problems all tied together in the end. This thesis is a study of black holes, their interaction with light and matter, and how they evolve through cosmic time. Many lifetimes of work have gone into generating the theory behind the sentence just prior. I hope that my contributions embellish these theories.
  • Item
    Thumbnail Image
    Non-Equilibrium Processes in Neutron Stars and Ultracold Gases
    Kerin, Alex David ( 2023-06)
    From the booms and busts of the economy to the schooling of fish, non-equilibrium phenomena are ubiquitous and appear at all scales. However, non-equilibrium systems have proven infamously difficult to model and understand. In this thesis we present two different of non-equilibrium systems, one classical and one quantum mechanical, and thoroughly investigate their behaviour: (i) the repeated localised mechanical failure of the crust of a spinning down neutron star, and (ii) the dynamics of quenched few-body quantum systems. As an isolated neutron star spins down the centrifugal force weakens but the gravitational force doesn't change. This results in the crust changing shape and accruing mechanical strain to the point of failure. Mechanical failure locally deforms the crust and dissipates and redistributes strain. This can result in avalanches of further failures as one region of the crust failing may prompt a neighbouring region to fail. The evolving crust is a classical far-from-equilibrium system capable of avalanche behaviour like the classic sandpile model. The statistics of crustal failure events are of much interest due to their suggested relevance to transient phenomenon such as glitches or fast radio bursts. We present a cellular automaton designed to describe the evolution of the crust over spin down and the effects of local failure. This automaton describes when and where crustal failures occur and how large they are. Additionally this automaton describes the failure-induced change in the shape of the crust. Using this automaton we find that the star needs to be born spinning over \approx 750 Hz to accumulate sufficient strain to fail at all, that the waiting-times between subsequent events are distributed as a power-law spanning seven orders of magnitude, and that the ellipticities of isolated neutron stars are in the range 10^{-13} to 10^{-12}, among many other results. It has been suggested that the mechanical failure of the crust is the cause (or result) of a variety of transient phenomena such as glitches or gamma ray bursts. This model provides predictions of the statistical behaviour of crustal failure which can be compared to the observed behaviour of these transients. Additionally, the model describes the shape of the crust and the rotational frequency at all times which allows for the wave strain of emitted gravitational waves to be calculated with implications for searches for continuous gravitational wave sources. Cold quantum gases have attracted a great deal of experimental and theoretical interest thanks to the high degree of experimental control possible over them which makes them excellent testing grounds of quantum theory. Additionally, they are excellent tools for the study of quantum thermalisation. We consider a few interacting particles initially in some equilibrium state and suddenly change (quench) the interaction strength which kicks the system away from equilibrium. Specifically, we consider systems of two and three bodies of arbitrary mass and various particle symmetries interacting via a contact interaction in an isotropic three-dimensional harmonic trap. We take particular interest in quenching between the weakly and strongly interacting regimes and the following far-from-equilibrium post-quench evolution. We describe the non-equilibrium post-quench evolution of the system by analytically and semi-analytically calculating two observables: the Ramsey signal and the particle separation. We are able to calculate these quantities for the two-body system with arbitrary particle masses for any quench in interaction strength. Additionally, we extend these calculations to three-body systems of two identical fermions and a distinct particle or three identical bosons where the quench is between the strongly and weakly interacting regimes. In the two-body case we find when quenching from weak to strong interactions the particle separation oscillates periodically between \approx0.85a_{\mu} and \approx1.15a_{\mu}, where a_{\mu} is the simple harmonic oscillator length-scale. For the same quench in the three-body case the particle separation varies depending on the specifics of the system. For the fermionic case the particle separation oscillates periodically, peaking at \approx 2.18a_{\mu} with the mass ratio of the two species determining the minimum separation. For the bosonic case the oscillation is aperiodic. Both the maximum and minimum particle separation are determined by a quantity called the three-body parameter, but particle separation generally oscillates between \approx a_{\mu} and \approx 2a_{\mu}. However, in all cases when quenching from strong to weak interactions the calculations of the particle separation do not converge. This divergence is present whatever the initial state, mass ratio, particle symmetry, etc. and is present only for this particular quench from strong to weak interactions. We investigate possible sources of this divergence and future avenues of research into its causes. Finally, we note that these theoretical predictions of Ramsey signal and particle separation are experimentally testable with current techniques.
  • Item
    Thumbnail Image
    Spin-down signatures of young neutron stars
    Strang, Lucy Catherine ( 2022)
    The spin down of neutron stars has been invoked to explain a wide variety of electromagnetic and gravitational-wave signals. This thesis explores two different signals associated with the spin down of neutron stars, one electromagnetic signal and one gravitational-wave signal. Binary neutron star coalescences, confirmed as the progenitor of at least some short Gamma-ray bursts (sGRBs) in 2017, are predicted to form either a black hole or a highly magnetized neutron star. Up to 20% of sGRBs observed by the Neil Gehrels Swift telescope display prolonged X-ray emission, sometimes called a ``canonical'' afterglow, consisting of three phases: an initial power-law luminosity decay; a 'plateau', lasting between 10 s and 105 s, during which the X-ray luminosity is approximately constant; and a final power-law decay. Previous authors have noted that the evolution of the canonical light curve is broadly consistent with the expected spin-down luminosity of a neutron star. Key ideas from analytic, one-zone models of plerions (also called pulsar wind nebulae) can be used to model the evolution of a synchtrotron nebula fuelled by the the spin-down luminosity of a neutron star formed in an sGRB. An analytic expression for time-dependent, spatially-averaged electron energy distribution in the nebula is found and used to calculate the light curve and the point-in-time spectra. The light curves predicted by the plerionic model are consistent with the shape and luminosity of the X-ray light curves and reproduce the observed correlation between plateau duration and luminosity (i.e. brighter plateaux end sooner). Furthermore, Bayesian parameter estimation comparing the point-in-time spectra to time-averaged spectra of six Swift sGRBs with canonical X-ray afterglows and of known redshift allows estimation of the parameters of the neutron-star central engine, including its poloidal field strength Bp and its rotation period P0 at birth, and injection parameters within the shock, including the energy range of the relativistic electrons and their power-law index. All six sGRBs favour a neutron star with Bp ~ 1011 T and P0 ~ s, consistent with the prediction the neutron star should be highly magnetized and rapidly spinning. We also apply the point-in-time spectra to four time-averaged spectra taken at four separate epochs in the X-ray afterglow of GRB130603B and infer the evolution of the magnetic field in the synchrotron bubble B. We find the evolution of B is slower than the expected evolution of the far-field limit of the stellar magnetic field. Rotating, non-axisymmetric neutron stars spin down via the emission of continuous gravitational waves which may be detectable by current terrestrial interferometers such as the advanced Laser Interferometric Gravitational-wave Observatory (LIGO) and advanced Virgo. Young core-collapse supernova remnants are likely hosts of young neutron stars and are common targets for wide-band directed searches for continuous gravitational waves targeting non-pulsating neutron stars. In this work, we present the results for two searches for continuous waves from neutron stars in young supernova remnants using a hidden Markov model (HMM). The HMM tracking scheme models the frequency evolution as a random walk with secular spin down and remains sensitive in the presence of stochastic spin wandering similar to that observed in pulsar timing observations. A search targeting twelve neutron stars in young supernova remnants in the second observing run (O2) of advanced LIGO using an HMM tracking scheme identifies 1012 potential candidates, 18 of which survive a series of standard vetoes. Further assessment of the 18 survivors based on their dependence on sky position and Doppler modulation confirms they are all consistent with terrestrial noise. A second search, conducted with the the LIGO-Virgo-KAGRA (LVK) collaboration, targets fifteen neutron stars in young supernova remnants in the first half of the third observing run (O3a) of advanced LIGO and advanced Virgo using three search pipelines, including an HMM tracking scheme, and reports no candidates consistent with an astrophysical origin after a rigorous veto and follow-up process. The HMM tracking scheme sets the first 95% confidence limits on gravitational-wave strain, h095%, for these targets with a random-walk signal model, reaching a sensitivity of h095% = 2.64 x 10-25 at 172 Hz for G353.6-0.7. The constraints on h095% are converted to upper limits on neutron-star ellipticity below 10^-5 above 150 Hz and constrain the maximum amplitude of internal r-mode oscillations below 10^-3 above 150 Hz.
  • Item
    Thumbnail Image
    Observational methods towards constraining the chemical evolution of galaxies
    Cameron, Alex James ( 2020)
    Understanding the array of physical processes that have shaped galaxy assembly remains one of the most fundamental pursuits in astrophysics. Gas in galaxies is enriched with heavy elements via stellar nucleosynthesis, but chemical abundances (``metallicity'') are also shaped by galaxy-scale processes including gas accretion, feedback-driven outflows, radial gas flows, interactions, and mergers. Metallicity measurements therefore afford one of our most powerful observational probes of galaxy evolution. In this thesis I explore the performance of observational methods for constraining (i) gas-phase metallicity in galaxies, and (ii) host dark matter halo masses of galaxies; the latter of which is critical to the physics of gas flows due to its contribution to the gravitational potential well of galaxies. A particular focus is the improved understanding of systematic uncertainties near instrumental limits, which will be vital to maximise the impact of surveys conducted with future facilities. Galaxy clustering is an efficient approach for drawing statistical connections between galaxies and their host dark matter haloes, however traditional methods are challenging to apply at z > 2 where imaging survey volumes are limited. I instead apply a counts-in-cell approach to photometric z ~ 2 candidates from a random-pointing Hubble Space Telescope survey, showing mean counts of N > ~5 per field are capable of constraining the large scale galaxy bias. The James Webb Space Telescope will achieve comparable number counts out to z ~ 8, and thus a similar JWST survey could place novel constraints on the halo masses of galaxies in the epoch of reionization. Global metallicities in low-mass galaxies afford important constraints on the impact of feedback-driven outflows on galaxy evolution. However at high-z, obtaining the requisite emission line measurements is observationally challenging. I use Keck/MOSFIRE spectroscopy to explore prospects for extending z ~ 1 - 2 metallicity measurements to lower masses. I find the dominant source of uncertainty arises from reduced number of emission lines as opposed to lower signal-to-noise, even at the detection limit. JWST/NIRSpec will revolutionise high-z metallicity studies due to the large suites of emission lines it will be able to assemble. Electron temperatures (T_e) measured with auroral lines are an important baseline in metallicity studies. However the faintness of auroral lines has hitherto limited spatially resolved T_e studies. I report two separate studies based on mapping auroral lines in integral-field spectroscopy (IFS) of low-z galaxies. Measurements of auroral lines in the SAMI Galaxy Survey afford new insights into the effects of ionisation parameter variations on recovered metallicity gradients. Applying these principles to Keck/KCWI IFS data of an edge-on disk galaxy, I measure an extra-planar temperature gradient and present preliminary evidence for extra-planar metallicity variations.
  • Item
    Thumbnail Image
    The host galaxies of high-redshift quasars
    Marshall, Madeline Anne ( 2020)
    In the early Universe, we observe supermassive black holes with masses of up to a billion times the mass of the Sun, accreting at or even above the Eddington limit. These high-redshift quasars are some of the most luminous objects in the Universe, and raise many questions about the formation and growth of the first black holes. Investigating their host galaxies provides a useful probe for understanding these high-redshift quasars. In the local Universe, there are clear correlations between the mass of a supermassive black hole and the properties of its host galaxy, indicating a black hole--galaxy co-evolution. Exploring how these black hole--host relations evolve with redshift can give valuable insights into why these relations exist. Studying the host galaxies of high-redshift quasars thus provides vital insights into the early growth of supermassive black holes and the black hole--galaxy connection. In this thesis I use three techniques to study the host galaxies of high-redshift quasars: the Meraxes semi-analytic model, the BlueTides hydrodynamical simulation, and observations with the Hubble Space Telescope. Meraxes is a semi-analytic model designed to study galaxy formation and evolution at high redshift. Using this model, I study the sizes, angular momenta and morphologies of high-redshift galaxies. I also use Meraxes to study the evolution of black holes and their host galaxies from high redshift to the present day. The model predicts no significant evolution in the black hole--host mass relations out to high redshift, with the growth of galaxies and black holes tightly related even in the early Universe. I also examine the growth mechanisms of black holes in Meraxes, finding that the majority of black hole growth is caused by internal disc instabilities, and not by galaxy mergers. I then use the BlueTides cosmological hydrodynamical simulation to investigate the detailed properties of quasar host galaxies at z=7. I find that the hosts of quasars are generally highly star-forming and bulge dominated, and are significantly more compact than the typical high-redshift galaxy. Using BlueTides I make predictions for observations of quasars with the James Webb Space Telescope, finding that detecting quasar hosts at these redshifts may be possible, but will still be challenging with this groundbreaking instrument. Finally, I use observations from the Hubble Space Telescope to obtain deep upper limits on the rest-frame ultraviolet luminosities of six z~6 quasars. I also detect up to 9 potential companion galaxies surrounding these quasars, which may be interacting with their host galaxies. Observations with the upcoming James Webb Space Telescope are needed to detect quasar host galaxies in the rest-frame ultraviolet and optical for the first time.
  • Item
    Thumbnail Image
    Nature of quasar disk-wind
    Yong, Suk Yee ( 2019)
    The brightest persistent astrophysical sources in the universe are quasars, a group of active galactic nuclei (AGN) that appear star-like and radiate across all wavelengths. The emitted radiation is believed to be powered by a supermassive black hole at the core of a galaxy. Matter that falls into the black hole is being fed onto the accretion disk, heating up the disk in the process due to friction. A wind emanating from the accretion disk, or a disk-wind, appears ubiquitous in these objects and acts as one effective way to generate the spectral lines observed in the quasar's spectrum. The broad spectral lines, originating from the broad line region (BLR), show diverse properties, specifically in velocity shift, line width, and degree of asymmetry. Yet, the exact structure of the BLR has remained perplexing due to its small size, which means it is unresolved even with the current astronomical instrumentation. Thus, simulations are important. By developing a model of the BLR, an informative analysis of the line profiles allows us to explore some of the key questions about the BLR, emphasising the shape of spectral lines, the disk-wind BLR, and the orientation. We simulate line profile modelling using a simple kinematical disk-wind model of the BLR with radiative transfer in the high velocity limit. The model provides a framework to explore the characteristics of the emission line profile induced by the different geometries and kinematics of the BLR, including the opening angle of the wind and the geometry of the line emitting region. The effect of orientation in these systems is also examined. As a first step, we use the model to simulate a narrow outflowing disk-wind, which has been described in the literature. The primary objective is to determine whether the observed emission line properties are consistent with a narrow wind scenario. We find that the line profiles are more blueshifted for a narrow polar wind model as opposed to intermediate and equatorial models. When viewing at pole-on angles, the simulated emission lines show a narrower line width, which is asymmetric and more blueshifted than that viewed edge-on. The blueward shift of the line profile increases as the line-of-sight and wind intersect. The model is also able to recover a shorter time delay in the red or blue side of the line profiles, consistent with observational evidence in reverberation mapping studies. The second part of the thesis considers the properties of broad absorption line quasars (BALQs). These objects are rare and often display a blueward absorption trough relative to the emission line. One interpretation of the velocity offsets is the unification based on orientation, whereby a BAL is viewed within a constrained narrow wind angle. In order to test whether the BALQs and non-BALQs can be distinguished by their emission features, we conduct statistical tests and machine learning on the two populations. We find that their continuum and emission features are qualitatively similar, which contradicts the narrow disk-wind model in the geometric unification. Therefore, we propose a model of the disk-wind comprising a wide wind opening angle with multiple dense radial streams, where the BAL is detected when the line-of-sight crosses these streams. These findings have lead us to the discovery of a novel orientation indicator of quasars in the ultraviolet-optical regime. We propose a simple yet robust angle-of-viewing probe using the correlation between the velocity shifts and line widths. Our idea is shown to be qualitatively consistent with other orientation proxies. We also perform a wide angle disk-wind simulation and successfully retrieve the predicted correlation with inclination. In addition, we extend our model to estimate the bias in the virial black hole mass due to the scale factor f, which is related to the unknown nature of the BLR. Using a wide disk-wind configuration, we retrieve the f factors for a range of inclination angle. The f factor shows significant dependence with orientation, characterisation of the line width, and location of the emission region in the wind. Therefore, using a constant f value biases the estimation of the mass of the black hole.
  • Item
    Thumbnail Image
    Simulations of source recovery and completeness in galaxy surveys at high redshift
    Carrasco Nunez, Daniela Patricia ( 2018)
    The search for and characterisation of galaxies at high-redshift is a very active topic in Astrophysics. Thanks to advances in observations from space, the redshift frontier is approaching the epoch of formation of first generation objects. Thus, these samples of galaxies can give us insight into the processes that govern galaxy formation and evolution. One of the key observables used to characterise galaxy populations throughout the cosmic history is their luminosity function (number of galaxies per unit luminosity per unit volume), which requires knowledge and characterisation of the completeness and selection functions of a survey, in addition to the catalogue of discovered objects. In this thesis, we present a search for high-redshift galaxies (redshift z > 6) in two in the Hubble Space Telescope surveys, the Brightest of Reionizing Galaxies Survey (BoRG), and the Reionization Lensing Cluster Survey (RELICS) using a photometric selection technique (the Lyman break dropout selection). We aim at using the resulting galaxy candidates to estimate a new measurement of the luminosity function at z ~ 10. To achieve that, we develop GLACiAR, an open Python-based tool available on GitHub, which is designed to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging datasets aimed at searching for high-redshift galaxies through the Lyman Break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate. We finally apply GLACiAR to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z ~ 10 galaxies). Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for artificial sources can impact completeness estimates.
  • Item
    Thumbnail Image
    PUMA and MAJICK: cross-matching and imaging techniques for a detection of the epoch of reionisation
    Line, Jack ( 2017)
    The epoch of reionisation (EoR) is one of the last unknowns in observational cosmology. After recombination, when the Universe cooled sufficiently and collapsed into neutral hydrogen (HI), the Universe was devoid of any light sources. During this cosmic ‘dark age’, the Universe was completely opaque to ultra-violet radiation, due to the abundance of HI. After some time, the very first luminous sources formed via gravitational collapse, and began to ionise the surrounding HI. Eventually the Universe transitioned from opaque to transparent, allowing us once again to peer into the cosmic depths. The exact timing and manner of the EoR has never been observed, and is paramount to confirming our the wealth of theoretical understanding. A new generation of low radio-frequency interferometers have opened a window to explore the EoR, by tracing the evolution of 21 cm radiation from HI. The experiment hinges upon our ability to remove astrophysical foregrounds; extragalactic radio-loud galaxies and galactic diffuse synchrotron emission all conspire to drown out the EoR signal. In the first part of this thesis, we develop a new cross-matching method in order to create the most accurate radio source foreground model possible. We go on to apply this technique to catalogue creation and verification, and investigate the effects of accurate source positions in foreground removal. We comment on how this technique can inform next generation instrument design, such as the upcoming instrument SKA_LOW. In the second part, we investigate averaging interferometric data as a potential method to reduce both the enormous data loads that interferometers produce, and the contamination caused by far-field sources. Averaging inherently causes signal loss, with the amplitude of the loss dependent on the scale and layout of the telescope, and so its impact on a potential EoR measurement must be well understood. We develop simulation and imaging software with new functionality to achieve this.
  • Item
    Thumbnail Image
    Phenomenology of particle dark matter
    Leane, Rebecca Kate ( 2017)
    The fundamental nature of dark matter (DM) remains unknown. In this thesis, we explore new ways to probe properties of particle DM across different phenomenological settings. In the first part of this thesis, we overview evidence, candidates and searches for DM. In the second part of this thesis, we focus on model building and signals for DM searches at the Large Hadron Collider (LHC). Specifically, in Chapter 2, the use of effective field theories (EFTs) for DM at the LHC is explored. We show that many widely used EFTs are not gauge invariant, and how, in the context of the mono-W signal, their use can lead to unphysical signals at the LHC. To avoid such issues, the next iteration of a minimal DM framework, called simplified models, are considered. We discuss use of such models at the LHC in Chapter 3, and show that in the context of a renormalizable gauge-invariant theory, any isospin violating effects in mono-W signals cannot be large. In Chapter 4, we discuss an alternative search strategy to mono-X searches at the LHC — in the case that DM does not couple directly to hadrons, the mono-X signature does not exist, and instead a leptophilic DM signature can be probed. We focus on the prospects for leptophilic DM with a spin-1 mediator at the LHC, and discuss constraints from other experiments. In the third part of this thesis, we turn to astrophysical signals of DM. In Chapter 5, we show that a consequence of enforcing gauge invariance in simplified DM models provides a new dominant s-wave DM annihilation process for indirect detection searches, and set limits on the annihilation cross section from Pass 8 observations of the Fermi Gamma-ray Space Telescope. In Chapter 6, we demonstrate the impact of mass generation for simplified models, finding that the relic density and indirect detection constraints, along with the DM interaction types, are strongly dictated by the mass generation mechanism chosen. In Chapter 7, we show that the multi-mediator approach advocated in the previous two chapters can also lead to a new dominant signal, in the form of dark initial state radiation. Finally in Chapter 8, we look to the Sun to find that if DM annihilates to long-lived mediators, the gamma rays and neutrinos produced can be strongly probed by gamma-ray telescopes and observatories Fermi-LAT, HAWC, and LHAASO, as well as neutrino telescopes IceCube and KM3Net. Interestingly, these telescopes can provide the strongest probe of the DM spin dependent scattering cross section, outperforming standard high-energy solar neutrino searches and direct detection experiments by several orders of magnitude.
  • Item
    Thumbnail Image
    Dark matter halos in the early Universe
    Angel, Paul ( 2016)
    We use high resolution N-Body simulations to study the properties of dark matter halos during the Epoch of Reionization. The halo concentration and spin parameters are measured in the mass range 10^8Msun/ h < M < 10^11M sun/h and redshifts 55 concentration-mass (c(M)) relation that is almost flat and well described by a simple power-law for both NFW and Einasto fits. The equilibrium state of the halo has a significant effect on the resulting concentrations. We also measure the spin distribution and spin mass relation, which has a weak dependence on equilibrium state. The spin virial mass relation has a mild negative correlation at high redshift. The correlation between the local density (the environment) of a halo and its formation history is examined. There is very little correlation between the formation time of a halo with local density, but some correlation between environment and the number of mergers the halo has experienced since formation.