School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Studying the epoch of hydrogen reionisation in redshifted 21-cm radiation
    Geil, Paul M. ( 2011)
    The measurement of the spatial distribution of neutral hydrogen in the high-redshift intergalactic medium, through its 21-cm hyperfine transition, will revolutionise our understanding of the period in the evolution of the early Universe known as the cosmic dark ages. This period began once hot ionised gas, formed in the Big Bang, combined to form neutral gas, and lasted until the first stars, galaxies and quasars reionised most of the neutral hydrogen sometime between 400 000 to 700 million years after the Big Bang. The epoch of reionisation, driven by these first sources of light, is arguably the least understood, but one of the most important, periods in the evolution of the Universe. This thesis is an attempt to explain and explore some of the techniques we may employ in order to advance our understanding of this period and prepare for the first observations to come from a new generation of low-frequency instruments. Using a new efficient semi-numerical ionisation model to create simulations of the ionisation state of the intergalactic medium during the epoch of reionisation, we analyse the impact a percolating intergalactic medium has on redshifted 21-cm observations of high-luminosity quasar-generated regions of ionised hydrogen. We also investigate how a population of quasars modifies the 21-cm power spectrum during this period. The study of the reionisation history of hydrogen and, indirectly, the first galaxies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. We analyse the effect of non-polarised foreground subtraction on redshifted 21-cm observations, and demonstrate a method for removing polarised foregrounds using Faraday tomography.