School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Characterization of silicon and diamond semiconductor devices in the low temperature regime
    Eikenberg, Nina ( 2015)
    At ultra low temperatures, materials reveal interesting behaviours that become evident due to the freezing out of thermal vibrations. We report studies of two important group IV material systems using a newly-commissioned dilution refrigerator at temperatures of less than 50 mK, and under axial magnetic fields of up to 7 Tesla and 1 Tesla in the lateral plane. We realized these magnetic fields with a 3D vector magnet and calibrated the system using well-known test samples. The first material studied in detail was nitrogen enhanced grown ultranano- crystalline diamond (N-UNCD). Diamond displays a combination of many extreme physical properties such as a high thermal conductivity, the highest number density of atoms, and a wide optical band gap, and is in addition to these properties also biocompatible [1]. The ultra-nanocrystalline form of diamond is composed of small, 3-5 nm diameter grains of diamond and shares many of the desirable properties of the single crystal form, but is much easier to produce in thin form and can be used in wide variety of applications [2], especially for nanomechanics due to its strength and high Young's modulus [3]. When doped with boron, nano-crystalline diamond (B-NCD) displays superconducting properties below a critical temperature of less than a few Kelvin [4, 5]. The nitrogen doped form has found application in biomedical devices [6], but its superconducting behaviour at very low temperatures has not yet been demonstrated [7]. We fabricated N-UNCD thin films using microwave-enhanced CVD growth and used optical lithography to create Hall bar designs. We found that the conductivity of N-UNCD decreased with decreasing temperature, and between 36 mK and 4.9 K, a negative magneto-resistance was observed. Fitting the temperature and magnetic field dependent data with the 3D weak localization model developed by Kawabata [8], we found that 3D weak localization indeed plays a main role in the conduction mechanism of N-UNCD films even at ultra low temperatures. The second project was on the characterization of erbium doped silicon (Si:Er) semiconductor devices. Erbium has long been known to be important for use in optical fibre amplification in silica [9], and it also shows strong luminescent properties when it is added to Si as a dopant [10]. As such, Er is also of interest as optoelectronic semiconductor material [11]. Since the recent demonstration that it is possible to optically address single erbium ions in the silicon lattice [12] interest in Si:Er has increased. We studied silicon doped with erbium using ion implantation and report on our attempts to create CMOS devices with Er doped channels. The implanted material was characterized by optical spectroscopy, deep level transient spectroscopy, and measured both electrically and magnetically at low temperatures in the dilution refrigerator. Deep level transient spectroscopy performed on devices with varying anneal temperatures showed the emergence of electronically active traps with the minimum trap density occurring at annealing temperatures above 700 °C. Our results reveal that a rapid thermal anneal at 900 °C activates the luminescence from the implanted erbium ions. This effect remains, even if the sample is subjected to subsequent high temperature treatments. MOS devices co-doped with Er and P were fabricated and characterised to the extent they could be, based on the processing issues that arose.