School of Physics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Realistic read-out and control for Si:P based quantum computers
    Testolin, Matthew J. ( 2008)
    This thesis identifies problems with the current operation proposals for Si:P based solid-state quantum computing architectures and outlines realistic alternatives as an effective fix. The focus is qubit read-out and robust two-qubit control of the exchange interaction in the presence of both systematic and environmental errors. We develop a theoretical model of the doubly occupied D- read-out state found in Si:P based nuclear spin architectures. We test our theory by using it to determine the binding energy of the D- state, comparing to known results. Our model can be used in detailed calculations of the adiabatic read-out protocol proposed for these devices. Regarding this protocol, preliminary calculations suggest the small binding energy of the doubly occupied read-out state will result in a state dwell-time less than that required for measurement using a single electron transistor (SET). We propose and analyse an alternative approach to single-spin read-out using optically induced spin to charge transduction, showing that the top gate biases required for qubit selection are significantly less than those demanded by the adiabatic scheme, thereby increasing the D+D- lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed.