School of Chemistry - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 95
  • Item
  • Item
    Thumbnail Image
    Toward the synthesis and analysis of selenium-containing glucocorticoid prodrugs
    Macdougall, Phoebe Eleanor. (University of Melbourne, 2007)
  • Item
    Thumbnail Image
    NMR studies of amyloid ab-peptide in membranes
    Lau, Tong Lay (Crystal) (University of Melbourne, 2006)
  • Item
    Thumbnail Image
    Synthesis, structure and reactivity of ligand stabilized coinage metal nanoclusters
    Zavras, Athanasios ( 2013)
    The coinage metal nanoclusters (CMNCs), defined as copper, silver or gold, constitute an intermediate state of matter that exist between molecules and bulk material. The properties of CMNCs differs to that of molecules and bulk material due to quantum confinement effects. These nanostructured materials have attracted significant attention owing to their fundamentally interesting architectures, and unique properties with applications in areas such as catalysis, optical materials, medical imaging, models for hydrogen storage. Tailoring the properties of such promising materials has proven challenging and requires a fundamental understanding of their assembly, structure and reactivity. The aim of this thesis is: (i) the primary application of mass spectrometric techniques to monitor the formation of CMNCs which result from the addition of sodium borohydride to a solution consisting of a coinage metal salt and the bidentate ligand, bis(diphenylphsphino)methane (dppm) under various synthetic conditions; (ii) to apply this information in developing synthetic approaches to optimize clusters of interest and apply a mass spectrometry (MS) directed synthesis leading to the isolation of crystalline material suitable for structural characterization by X-ray crystallography (iii) apply MS based analysis methods to provide information on the reactivity of CMNCs in solution and the reactivity and structure of mass selected CMNCs in the gas phase. Electrospray ionization mass spectrometry (ESI-MS) and UV-Vis spectroscopy were used to monitor the formation of gold nanocluster cations in the condensed phase via the sodium borohydride (NaBH4) reduction of methanolic solutions containing AuClPPh3 and dppm. ESI-MS highlights the formation of complexes prior to the addition of NaBH4 as [Au2(dppm)2]2+, [Au(PPh3)2]+, [Au2(dppm)3]2+, [Au(dppm)2]+,[Au2Cl(dppm)2]+. The cationic complex product distribution can be monitored over a range of metal to ligand ratios to minimize the colloid precursor [Au(PPh3)2]+. The addition of NaBH4 where the optimized metal to ligand ratio was determined as AuClPPh3:dppm is 1:2 results in the formation of the following types of gold nanoclusters [Au9(dppm)4]3+, [Au9(dppm)5]3+, [Au5(dppm)3(dppm-H+)]2+, [Au10(dppm)4]2+, [Au11(dppm)5]3+, [Au11(dppm)6]3+, [Au13(dppm)6]3+ and [Au14(dppm)6(Ph2PCHPPh2)]3+. The gas phase unimolecular chemistry of these cations was examined by (i) collision induced dissociation (CID) and electron capture dissociation resulting in the gas phase synthesis of the novel clusters [Aux(dppm)y]z+ (x = 2,3 , 6–13; y = 1–6 and z = 1–3) and [Aux(dppm)y(dppm-H+)]z+ (x = 5,14; y= 2,5; z = 2,3) via ligand loss and core fission fragmentation channels. (ii) electron capture dissociation (ECD) of mass selected multiply charged gold cluster cations where an additional fragmentation channel arises due to C-P bond activation. ESI-MS was also applied to study the reactivity that results from silver salts in the presence of dppm, that are treated with sodium borohydride. It was observed by ESI-MS that no all metallic silver clusters had formed. Instead there existed abundant and relatively monodisperse trinuclear silver(I) hydride clusters. The synthesis could be refined by careful MS based analysis to result in the isolation of crystalline material of (i) [Ag3(μ3-H)(μ3-Cl)(dppm)3]BF4, and (ii) [Ag3(μ3-H)(dppm)3](BF4)2. These clusters could be mass selected to generate novel gas phase clusters in the gas phase. The multiply charged cation [Ag3(μ3-H)(dppm)3]2+ was also investigated by ECD and EID. The silver hydride cluster cation [Ag10H8(dppm)6]2+ was observed during the synthesis of trinuclear silver clusters. This cluster has yet to be isolated.
  • Item
    Thumbnail Image
    Ultrasonic synthesis and characterization of multifunctional nano/microcapsules
    CAVALIERI, FRANCESCA ( 2013)
    Liquid and air-filled nano/microcapsules have potential applications in diagnostic and therapeutic medicine. Air and liquid cores are generally coated by a protein, lipid or polymer shell. Air-filled nano- and microcapsules, commonly referred to as nano- and microbubbles (NBs and MBs), are ultrasound responsive colloidal particles with a strong potential to become theranostic agents, combining the contrast and therapeutic functionalities. In the last decades, they have played a significant role as ultrasound contrast agents in diagnostic imaging. Similarly, liquid and solid encapsulated nano/ microcapsules have potential applications in targeted drug delivery in medicine. This thesis investigates the use of high energy ultrasound processing (batch and flow-through) to synthesise nano- and microcapsules using proteins and biocompatible polymers (e.g., polymethacrylic acid) in aqueous solutions. The ultrasound-assisted self-assembly and cross-linking of lysozyme at water–air and water–perfluorohexane interfaces are shown to produce lysozyme-shelled hollow microbubbles (LSMBs) and microcapsules (LSMCs), respectively. The arrangement of lysozyme at the air–liquid or oil–liquid interfaces is accompanied by changes in the bioactivity and conformational state of the protein. A comprehensive study of the microspheres (LSMBs and LSMCs) size distribution, degradability, mechanical and surface properties, acoustic response and biofunctional properties has been performed. A novel flow-through sonication technique for synthesizing stable and monodispersed nano- and micrometer-sized bubbles has been developed. It has been demonstrated that the size and size distribution of the bubbles are controlled by the active cavitation zone generated by ultrasound. The cytoxicity of LSMBs and LSMCs on adherent cell line derived from a human breast adenocarcinoma cells (SKBR3) has been evaluated. SKBR3 shows capability to phagocyte LSMBs and LSMCs in vitro. In addition, a one-pot ultrasonic procedure has been developed as a versatile route for synthesizing polymerv coated microspheres, PMASH MB, that have potential application as drug delivery vehicles. The use of biocompatible thiolated poly(methacrylic acid) as the shell material offers control over size, morphology and functionality of the microspheres. LSMBs and PMASH MBs are shown to possess echogenic properties and can be used for loading oligonucleotides. Finally, LSMBs were engineered as a support for the immobilization of gold nanoparticles and an enzyme, alkaline phosphatase, in order to develop micro-antimicrobial and biosensing devices.
  • Item
    Thumbnail Image
    Synthesis and optical properties of CdSe core and core/shell nanocrystals
    van Embden, Joel Leonard ( 2008)
    The synthesis of nanocrystals is unique compared to the formation of larger micron-sizesspecies as the final crystal sizes are not much larger than the primary nuclei. As a consequencethe final outcome of a nanocrystal synthesis i.e mean crystal size, concentrationand standard deviation is almost solely determined by the end of the nucleation phase. Directingthe growth of crystals beginning from aggregates of only tens of atoms into maturemonodisperse nanocrystals requires that the governing kinetics are strictly controlled at everymoment of the reaction. To effect this task various different ligands need to be employed,each performing a particular function during both nucleation and growth. (For complete abstract open document)
  • Item
    Thumbnail Image
    Oleic acid adsorption at the goethite-water interface
    Jung, Robert Frederick ( 1976)
    The adsorption of oleate at the goethite-water interface has been studied. In addition, the interactions of oleate at other mineral-water interfaces were considered. Mainly by means of a literature review, a bulk equilibrium solubility diagram for oleic acid in water was constructed, as a function of total oleate concentration and pH. The competing bulk precipitation equilibria for oleic acid mineral phases such as iron (III) oxides, barite, calcite and fluorite and the relevant metal oleates, were considered graphically. Literature, adsorption, flotation recovery, electrokinetic and infrared work was examined in the light of this bulk precipitation data. It was found that many of these studies have been carried out in pH-concentration regions where bulk equilibrium phase changes were occurring, such as precipitation of oleic acid or of metal oleates. Adsorption behaviour in these systems was obscured by the bulk precipitation effects. Adsorption experiments were carried out with oleate in the presence of goethite, choosing pH and concentration such that bulk precipitation effects were not important. Electrostatic and hydrophobic interactions as well as chemisorption, appeared to be of importance in the adsorption process. A new approach for surfactant adsorption, a multiple equilibrium model, was suggested to describe quantitatively, the adsorption of oleate at the goethite-water interface. This approach considers oleic acid solution equilibria. The adsorption process is represented by the reaction of neutral goethite surface sites with oleate and protons in the manner of solution equilibria. A good fit was obtained to the experimental data. The model predicts that the acid-soap species HOI2 is the most important adsorbed species.
  • Item
    Thumbnail Image
    The adsorption of polydisperse nonionic surfactants at the solid/aqueous interface
    Aston, Jeffrey Roy ( 1987)
    A high resolution capillary gas chromatography technique has been adapted to the analysis of polydisperse non-ionic surfactants. This technique has enabled the complete characterization of the oligomer distributions of very small samples of surfactants (typically 0.1 µg to 0.5 µg). It has made possible the determination of changes in the oligomer distribution on adsorption of surfactant at the solid/aqueous interface. Isotherms have been measured for the adsorption of a series of polyoxyethylene nonylphenol surfactants from aqueous solution on to various solids. These isotherms indicate that the surfactant – surface interaction increases with an increase in the hydrophobicity of the adsorbent. They also show a dependence upon the average length of the ethylene oxide chain and the ratio of the surface area/solution volume. These latter factors affect both the total partition of surfactant between the surface and the solution, and also the selectivity of the solid surface. A detailed study of the adsorption of N8 (a commercial non-ionic surfactant) by a precipitated silica at various surface area/solution ratios, has been undertaken, where the equilibrium surfactant oligomer distributions in the adsorbed and solution phases have been determined. At surfactant concentrations above the critical micelle concentration, the phase separation approach has been used to estimate the surfactant oligomer distributions in free monomer solution and in micelles. This information has been combined with a surface phase model to interpret the results of the adsorption distribution studies.
  • Item
    Thumbnail Image
    The structure of the oxide/aqueous electrolyte interface
    Yates, David Edwin ( 1975)
    The structure of the oxide/aqueous electrolyte interface has been studied. The surface porosity of several oxides to ions is evaluated and the contribution of such porosity to the double layer properties determined by surface charge measurements. The oxides studied are B.D.H. precipitated silica, before and after heat treatment, rutile, goethite, hematite and amorphous ferric oxide. The surface porosity was evaluated using nitrogen adsorption for physical porosity, tritium exchange for surface hydration and dissolution for surface crystallinity. It is found that the surfaces of metal oxides may be divided into two categories; those that are porous to ions and those that are non-porous. Of those studied only the precipitated silica and the amorphous ferric oxide are porous. The porosity is probably due to an easily permeated layer of hydrolysed oxidic material. It does lead to exceptionally high surface charges. However the non-porous oxides also exhibit high surface charges so that while surface porosity may, in some cases, contribute to oxide double layer properties, it cannot be a general explanation of the high differential capacities observed. A site-binding model for non-porous oxide/aqueous electrolyte interfaces is introduced, in which it is proposed that the adsorbed counter ions form interfacial ion pairs with discrete charged surface groups. This model is used to calculate theoretical surface charge densities and potentials at the Outer Helmholtz Plane. The calculated values are consistent with experimental data for oxides provided a high value of the inner zone capacity is accepted. An explanation is provided for the difference between silica and most other oxides in terms of the dissociation constants of the surface groups.
  • Item
    Thumbnail Image
    Spectroscopic studies of gas phase ion-neutral interactions
    Loh, Zöe Miranda ( 2007-10)
    Gas phase experimental and computational investigations are described for F--H2 and the halide-methane complexes and clusters, F--(CH4)n and Cl--(CH4)n. Vibrational predissociation spectroscopy in conjunction with tandem mass spectrometry are used to obtain mid-infrared spectra of each complex in the ligand’s hydrogen stretch region. Ab initio calculations are used to predict structures, binding energies and vibrational frequencies and intensities. By examining the changes in both the vibrational frequencies and intensities of the neutral moiety upon complexation with the anion, and comparing these with the theoretical predictions, structures are able to be inferred. (For complete abstract open document)