School of Chemistry - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Oleic acid adsorption at the goethite-water interface
    Jung, Robert Frederick ( 1976)
    The adsorption of oleate at the goethite-water interface has been studied. In addition, the interactions of oleate at other mineral-water interfaces were considered. Mainly by means of a literature review, a bulk equilibrium solubility diagram for oleic acid in water was constructed, as a function of total oleate concentration and pH. The competing bulk precipitation equilibria for oleic acid mineral phases such as iron (III) oxides, barite, calcite and fluorite and the relevant metal oleates, were considered graphically. Literature, adsorption, flotation recovery, electrokinetic and infrared work was examined in the light of this bulk precipitation data. It was found that many of these studies have been carried out in pH-concentration regions where bulk equilibrium phase changes were occurring, such as precipitation of oleic acid or of metal oleates. Adsorption behaviour in these systems was obscured by the bulk precipitation effects. Adsorption experiments were carried out with oleate in the presence of goethite, choosing pH and concentration such that bulk precipitation effects were not important. Electrostatic and hydrophobic interactions as well as chemisorption, appeared to be of importance in the adsorption process. A new approach for surfactant adsorption, a multiple equilibrium model, was suggested to describe quantitatively, the adsorption of oleate at the goethite-water interface. This approach considers oleic acid solution equilibria. The adsorption process is represented by the reaction of neutral goethite surface sites with oleate and protons in the manner of solution equilibria. A good fit was obtained to the experimental data. The model predicts that the acid-soap species HOI2 is the most important adsorbed species.
  • Item
    Thumbnail Image
    Orientated water under insoluble monolayers
    Ralston, John ( 1970)
    The fact that oil could calm a rough sea was recorded by Pliny the Elder and by Plutarch. More quantitative information was provided by Benjamin Franklin in 1774 when he reported to the Royal Society that a teaspoonful of oil made a half-acre surface of pond ".... as smooth as a looking glass" (24). Subsequent experimentation showed that a similar effect could be observed when small amounts of insoluble soaps or "fatty" organic compounds were spread on water surfaces. Willard Gibbs published his thermodynamic treatment of surface tension and adsorption in 1878, providing the necessary theoretical background for explaining experimental results (66). In 1891 Fraulein Pockels developed the technique of manipulating these insoluble films between "barriers" extending across the entire width of a trough of water, filled so that it almost overflowed. This permitted quantitative information about surface tension and surface area to be obtained and led Rayleigh to propose, in 1899, that surface films were only one molecule thick. The basis for contemporary understanding of the behaviour of molecules in insoluble monolayers was provided in 1817 by Irving Langmuir (97), who devised the surface balance which still bears his name and whose results verified the theories of molecular orientation at surfaces. (From introduction)