School of Chemistry - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Ultrafast spectroscopy of nanostructures
    Zeng, Peng ( 2017)
    This thesis presents studies of ultrafast laser spectroscopy of semiconductor and gold nanostructures, aiming to advance our understanding of, and consequently control, photoinduced charge carrier dynamics in nanostructures to further improve their performance in practical applications. Artificial nanostructures have drawn significant attention in applications such as optoelectronic devices, photo-catalysts, and solar cells. Compared to bulk materials, nanostructures provide unique optical properties, which more importantly can be directly and easily tailored through changing size or shapes of the structures, during their synthesis procedures. Photoinduced charge carrier dynamics in the nanostructures play an important role in the photon conversion processes. However, in contrast to the fast development of nanostructure-based devices, the mechanisms of these processes are still being experimentally unravelled. In this study, a range of ultrafast optical spectroscopy methods have been applied to investigate the carrier dynamics, with a focus on the electron transfer (ET) process. Semiconductor nanoparticles, or quantum dots (QDs), of core/shell heterostructures are promising for their good photostability and high photoluminescence quantum yields. The ET dynamics from the 1S$_\mathrm{e}$ electron state to adsorbed methyl viologen electron acceptors, in CdSe/CdS and CdSe/CdS/ZnS QDs, were studied using femtosecond transient absorption and time-resolved photoluminescence spectroscopy. By changing shell thickness or alloying the shell interface, significant modulation of the ET dynamics was observed. In CdSe/CdS QDs, the 1S$_\mathrm{e}$ ET dynamics exhibited a hole-coupled effect, which is ascribed to the Auger-assisted ET process. In CdSe/CdS/ZnS QDs, the formation of alloyed shell interfaces at elevated shelling temperatures reduced the shell potential barrier, leading to an observed greater ET rate. Photoinduced ET processes from gold nanorod and nanowire structures to TiO$_{2}$ were also investigated, using a visible pump-NIR probe transient absorption spectroscopy method. Partially embedded Au nanorods on a TiO$_{2}$ layer exhibited an enhanced but directional ET process. An Au nanowire grating supported on a TiO$_{2}$ layer structure underwent the plasmon-waveguide hybridisation mechanism. The ET dynamics from the split states showed a dependence on the light-matter coupling effect that can be varied with the Au grating period. In summary, this thesis shows the great ability of ultrafast optical spectroscopy to reveal photoinduced processes in nanostructures. Results indicate ways for rational design of nanostructure-based devices. A greater understanding in underlying physics leads to better control of the performance of these nano-systems in potential practical applications.