Infrastructure Engineering - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Automatic spatial metadata updating and enrichment
    OLFAT, HAMED ( 2013)
    Spatial information is necessary to make sound decisions at the local, regional and global levels. As a result, the amount of spatial datasets being created and exchanged between organisations or people over the networked environment is dramatically increasing. As more data and information is produced, it becomes more vital to manage and locate such resources. The role in which spatial metadata, as a summary document providing content, quality, type, creation, distribution and spatial information about a dataset, plays in the management and location of these resources has been widely acknowledged. However, the current approaches cannot effectively manage metadata creation, updating, and improvement for an ever-growing amount of data created and shared in the Spatial Data Infrastructures (SDIs) and data sharing platforms. Among the available approaches, the manual approach has been considered monotonous, time-consuming, and a labour-intensive task by organisations. Also, the existing semi-automatic metadata approaches mainly focus on specific dataset formats to extract a limited number of metadata values (e.g. bounding box). Moreover, metadata is commonly collected and created in a separate process from the spatial data lifecycle, which requires the metadata author or responsible party to put extra effort into gathering necessary data for metadata creation and updating. In addition, dataset creation and editing are detached from metadata creation and editing procedures, necessitating diligent updating practices involving at a minimum, two separate applications. Metadata and related spatial data are often stored and maintained separately using a detached data model that results in avoiding automatic and simultaneous metadata updating when a dataset is modified. The spatial data end users are also disconnected from the metadata creation and improvement process. Accordingly, this research investigated a framework and associated approaches and tools to facilitate and automate the spatial metadata creation, updating and enrichment processes. This framework consists of three complementary approaches namely ‘lifecycle-centric spatial metadata creation’, ‘automatic spatial metadata updating (synchronisation)’, and ‘automatic spatial metadata enrichment’ and a newly integrated data model for storing and exchanging spatial dataset and metadata jointly. The lifecycle-centric spatial metadata creation approach aimed to create metadata in conjunction with the spatial data lifecycle steps. The automatic spatial metadata updating (synchronisation) approach was founded on a GML-based integrated data model to update metadata affected by the dataset modification concurrent with any change to the dataset, regardless of dataset format. The automatic spatial metadata enrichment approach was also design-rooted in Web 2.0 features (tagging and folksonomy) to improve the content of spatial metadata keyword element through monitoring the end users’ interaction with the data discovery and retrieval process. The proposed integrated data model and automatic spatial metadata updating and enrichment approaches were successfully implemented and tested via prototype systems. The prototype systems then were assessed against a number of requirements identified for the spatial metadata management and automation and effectively responded to those requirements.