Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Walking-related knee contact forces and associations with knee pain across people with mild, moderate and severe radiographic knee osteoarthritis: a cross-sectional study
    Wu, W ; Bryant, AL ; Hinman, RS ; Bennell, KL ; Metcalf, BR ; Hall, M ; Campbell, PK ; Paterson, KL (ELSEVIER SCI LTD, 2022-06)
    OBJECTIVE: To investigate knee contact forces (KCFs), and their relationships with knee pain, across grades of radiographic knee osteoarthritis (OA) severity. DESIGN: Cross-sectional exploratory analysis of 164 participants with medial knee OA. Radiographic severity was classified as mild (grade 2), moderate (grade 3) or severe (grade 4) using the Kellgren & Lawrence (KL) scale. Walking knee pain was assessed using an 11-point numerical rating scale. External knee adduction moment (external KAM) and internal muscle forces were used to calculate medial, lateral and total KCFs using a musculoskeletal computational model. Force-time series across stance phase of gait were compared across KL grades using Statistical Parametric Mapping. Associations between KCFs and pain across KL grades were assessed using linear models. RESULTS: Medial KCFs during early and middle stance were higher in participants with KL3 and KL4 compared to those with KL2. In contrast, lateral KCFs were higher in those with KL2 compared to KL3 and KL4 in middle to late stance. The external loading component (i.e., KAM) of the medial KCF during middle to late stance was also greater in participants with KL3 and KL4 compared to those with KL2, whereas the internal (i.e., muscle) component was greater in those with KL3 and KL4 compared to KL3 during early stance. There were no associations between medial KCF and knee pain in any KL grade. CONCLUSIONS: Medial and lateral KCFs differ between mild, moderate and severe radiographic knee OA but are not associated with knee pain severity for any radiographic OA grade.
  • Item
    No Preview Available
    Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume
    Hipsley, A ; Hall, M ; Saxby, DJ ; Bennell, KL ; Wang, X ; Bryant, AL (SPRINGER, 2022-06)
    PURPOSE: Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology. METHODS: The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18-40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°-50°, 50°-40°, 40°-30°, 30°-20°, 20°-10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression. RESULTS: In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°-50° and 50°-40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume. CONCLUSION: Higher quadriceps strength at knee flexion angles of 60°-40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes. LEVEL OF EVIDENCE: III.