Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    T2*Mapping of Subtalar Cartilage: Precision and Association Between Anatomical Variants and Cartilage Composition
    Van Ginckel, A ; De Mits, S ; Bennell, KL ; Bryant, AL ; Witvrouw, EE (WILEY-BLACKWELL, 2016-11)
  • Item
    Thumbnail Image
    Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction
    Wang, X ; Wrigley, TV ; Bennell, KL ; Wang, Y ; Fortin, K ; Cicuttini, FM ; Lloyd, DG ; Bryant, AL (WILEY, 2018-07)
  • Item
    Thumbnail Image
    Effect of high and low-supportive footwear on female tri-planar knee moments during single limb landing
    Sayer, TA ; Hinman, RS ; Paterson, KL ; Bennell, KL ; Fortin, K ; Bryant, AL (BMC, 2018-09-10)
    BACKGROUND: Higher landing-related external knee joint moments at later stages of female pubertal development likely contribute to a higher incidence of non-contact anterior cruciate ligament (ACL) injury. Athletic footwear may provide a potential strategy to alter higher knee moments. METHODS: Thirty-one late/post-pubertal girls (Tanner stage IV-V, menarche and growth spurt attained) performed a single limb drop lateral jump in three footwear conditions (barefoot, low support shoes and high support shoes), in which peak knee abduction moment (KAbM), flexion moment (KFM) and internal rotation moments (KIRM) were measured. Repeated measures ANOVA and ANCOVA were used to test for a main effect of footwear with and without foot posture index (FPI) as a covariate (p < 0.05) with post-hoc test carried out via Fisher's Least Significant Difference (LSD). RESULTS: A main effect of footwear condition was observed for peak KFM (p < 0.05), but not KAbM or KIRM, in both unadjusted and adjusted models. Post-hoc analysis demonstrated that both high- and low-support shoes increased peak KFM compared with barefoot (p < 0.001). CONCLUSION: Our findings indicate commercially available high- and low-supportive footwear increase peak KFM, but do not effect KAbM or KIRM while landing among late/post-pubertal girls. This suggests that these styles of footwear are inadequate at reducing higher knee moments in an at-risk cohort.
  • Item
    Thumbnail Image
    Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees
    Saxby, DJ ; Bryant, AL ; Wang, X ; Modenese, L ; Gerus, P ; Konrath, JM ; Bennell, KL ; Fortin, K ; Wrigley, T ; Cicuttini, FM ; Vertullo, CJ ; Feller, JA ; Whitehead, T ; Gallie, P ; Lloyd, DG (SAGE PUBLICATIONS INC, 2017-08-31)
    BACKGROUND: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. HYPOTHESES: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. RESULTS: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R2 = 0.43, β = 0.62, P = .000; lateral: R2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R2 = 0.41, β = 0.64, P = .001) and thicknesses (R2 = 0.20, β = 0.46, P = .04). CONCLUSION: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
  • Item
    Thumbnail Image
    Tibiofemoral joint structural change from 2.5 to 4.5years following ACL reconstruction with and without combined meniscal pathology
    Wang, X ; Bennell, KL ; Wang, Y ; Wrigley, TV ; Van Ginckel, A ; Fortin, K ; Saxby, DJ ; Cicuttini, FM ; Lloyd, DG ; Vertullo, CJ ; Feller, JA ; Whitehead, T ; Gallie, P ; Bryant, AL (BMC, 2019-07-04)
    BACKGROUND: People who have had anterior cruciate ligament reconstruction (ACLR) are at a high risk of developing tibiofemoral joint (TFJ) osteoarthritis (OA), with concomitant meniscal injury elevating this risk. This study aimed to investigate OA-related morphological change over 2 years in the TFJ among individuals who have undergone ACLR with or without concomitant meniscal pathology and in healthy controls. A secondary aim was to examine associations of baseline TFJ cartilage defects and bone marrow lesions (BML) scores with tibial cartilage volume change in ACLR groups. METHODS: Fifty seven ACLR participants aged 18-40 years (32 isolated ACLR, 25 combined meniscal pathology) underwent knee magnetic resonance imaging (MRI) 2.5 and 4.5 years post-surgery. Nine healthy controls underwent knee MRI at the ~ 2-year intervals. Tibial cartilage volume, TFJ cartilage defects and BMLs were assessed from MRI. RESULTS: For both ACLR groups, medial and lateral tibial cartilage volume increased over 2 years (P <  0.05). Isolated ACLR group had greater annual percentage increase in lateral tibial cartilage volume compared with controls and with the combined group (P = 0.03). Cartilage defects remained unchanged across groups. Both ACLR groups showed more lateral tibia BML regression compared with controls (P = 0.04). Baseline cartilage defects score was positively associated with cartilage volume increase at lateral tibia (P = 0.002) while baseline BMLs score was inversely related to medial tibia cartilage volume increase (P = 0.001) in the pooled ACLR group. CONCLUSIONS: Tibial cartilage hypertrophy was apparent in ACLR knees from 2.5 to 4.5 years post-surgery and was partly dependent upon meniscal status together with the nature and location of the underlying pathology at baseline. Magnitude and direction of change in joint pathologies (i.e., cartilage defects, BMLs) were less predictable and either remained stable or improved over follow-up.
  • Item
    Thumbnail Image
    Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis
    Creaby, MW ; Wrigley, TV ; Lim, B-W ; Hinman, RS ; Bryant, AL ; Bennell, KL (BIOMED CENTRAL LTD, 2013-11-20)
    BACKGROUND: Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. METHODS: Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. RESULTS: Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). CONCLUSIONS: Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.
  • Item
    Thumbnail Image
    Differences and mechanisms underpinning a change in the knee flexion moment while running in stability and neutral footwear among young females
    Sayer, TA ; Hinman, RS ; Paterson, KL ; Bennell, KL ; Fortin, K ; Kasza, J ; Bryant, AL (BMC, 2019-01-08)
    BACKGROUND: Higher peak external knee flexion moments (KFM) during running has been observed in healthy people wearing athletic footwear compared to barefoot, which may increase risk of knee pathologies such as patellofemoral pain. Currently, no studies have examined whether stability and neutral style athletic shoes influence the peak KFM differently, or explored the underlying biomechanical mechanisms by which footwear alters peak KFM in young females. METHODS: Lower limb biomechanics of sixty girls aged between 10 and 25 years old were collected while running in footwear (both stability and neutral) and barefoot. The external peak KFM, sagittal plane kinematics, sagittal plane knee ground reaction force (GRF) lever arm and sagittal plane resultant GRF magnitude were analysed by repeated measures Analysis of Variance. Linear mixed models were fit to identify predictors of a change in peak KFM, and to determine if the effects of these predictors differed between footwear conditions. RESULTS: The peak KFM was higher wearing both shoe styles compared to barefoot (p < 0.001), while no between-shoe differences were found (p > 0.05). Both shoes also increased kinematic variables at the hip, knee, and ankle (p < 0.05). When all these variables were entered into the mixed model, only a change in the knee-GRF lever arm was predictive of a change in peak KFM wearing shoes compared to barefoot (p < 0.001). CONCLUSION: These findings provide evidence that stability and neutral shoes increase peak KFM compared to barefoot, which is associated with a change in the knee-GRF lever arm rather than a change in lower limb kinematics. Future studies may consider manipulating footwear characteristics to reduce the knee-GRF lever arm in an effort to reduce peak KFM and the potential risk of patellofemoral pain.
  • Item
    Thumbnail Image
    Cartilage morphology at 2-3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology
    Wang, X ; Wang, Y ; Bennell, KL ; Wrigley, TV ; Cicuttini, FM ; Fortin, K ; Saxby, DJ ; Van Ginckel, A ; Dempsey, AR ; Grigg, N ; Vertullo, C ; Feller, JA ; Whitehead, T ; Lloyd, DG ; Bryant, AL (SPRINGER, 2017-02)
    PURPOSE: To examine differences in cartilage morphology between young adults 2-3 years post-anterior cruciate ligament reconstruction (ACLR), with or without meniscal pathology, and control participants. METHODS: Knee MRI was performed on 130 participants aged 18-40 years (62 with isolated ACLR, 38 with combined ACLR and meniscal pathology, and 30 healthy controls). Cartilage defects, cartilage volume and bone marrow lesions (BMLs) were assessed from MRI using validated methods. RESULTS: Cartilage defects were more prevalent in the isolated ACLR (69 %) and combined group (84 %) than in controls (10 %, P < 0.001). Furthermore, the combined group showed higher prevalence of cartilage defects on medial femoral condyle (OR 4.7, 95 % CI 1.3-16.6) and patella (OR 7.8, 95 % CI 1.5-40.7) than the isolated ACLR group. Cartilage volume was lower in both ACLR groups compared with controls (medial tibia, lateral tibia and patella, P < 0.05), whilst prevalence of BMLs was higher on lateral tibia (P < 0.001), with no significant differences between the two ACLR groups for either measure. CONCLUSIONS: Cartilage morphology was worse in ACLR patients compared with healthy controls. ACLR patients with associated meniscal pathology have a higher prevalence of cartilage defects than ACLR patients without meniscal pathology. The findings suggest that concomitant meniscal pathology may lead to a greater risk of future OA than isolated ACLR. LEVEL OF EVIDENCE: III.
  • Item
    Thumbnail Image
    Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance.
    CLARK, ROSS ; BRYANT, ADAM ; Pua, Yonghao ; MCCRORY, PAUL ROBERT ; BENNELL, KIM ; HUNT, MICHAEL ( 2009)