Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Do biomechanical foot-based interventions reduce patellofemoral joint loads in adults with and without patellofemoral pain or osteoarthritis? A systematic review and meta-analysis
    Kayll, SA ; Hinman, RS ; Bryant, AL ; Bennell, KL ; Rowe, PL ; Paterson, KL (BMJ PUBLISHING GROUP, 2023-07)
    OBJECTIVE: To evaluate the effects of biomechanical foot-based interventions (eg, footwear, insoles, taping and bracing on the foot) on patellofemoral loads during walking, running or walking and running combined in adults with and without patellofemoral pain or osteoarthritis. DESIGN: Systematic review with meta-analysis. DATA SOURCES: MEDLINE, CINAHL, SPORTdiscus, Embase and CENTRAL. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: English-language studies that assessed effects of biomechanical foot-based interventions on peak patellofemoral joint loads, quantified by patellofemoral joint pressure, reaction force or knee flexion moment during gait, in people with or without patellofemoral pain or osteoarthritis. RESULTS: We identified 22 footwear and 11 insole studies (participant n=578). Pooled analyses indicated low-certainty evidence that minimalist footwear leads to a small reduction in peak patellofemoral joint loads compared with conventional footwear during running only (standardised mean difference (SMD) (95% CI) = -0.40 (-0.68 to -0.11)). Low-certainty evidence indicated that medial support insoles do not alter patellofemoral joint loads during walking (SMD (95% CI) = -0.08 (-0.42 to 0.27)) or running (SMD (95% CI) = 0.11 (-0.17 to 0.39)). Very low-certainty evidence indicated rocker-soled shoes have no effect on patellofemoral joint loads during walking and running combined (SMD (95% CI) = 0.37) (-0.06 to 0.79)). CONCLUSION: Minimalist footwear may reduce peak patellofemoral joint loads slightly compared with conventional footwear during running only. Medial support insoles may not alter patellofemoral joint loads during walking or running and the evidence is very uncertain about the effect of rocker-soled shoes during walking and running combined. Clinicians aiming to reduce patellofemoral joint loads during running in people with patellofemoral pain or osteoarthritis may consider minimalist footwear.
  • Item
    No Preview Available
    Walking-related knee contact forces and associations with knee pain across people with mild, moderate and severe radiographic knee osteoarthritis: a cross-sectional study
    Wu, W ; Bryant, AL ; Hinman, RS ; Bennell, KL ; Metcalf, BR ; Hall, M ; Campbell, PK ; Paterson, KL (ELSEVIER SCI LTD, 2022-06)
    OBJECTIVE: To investigate knee contact forces (KCFs), and their relationships with knee pain, across grades of radiographic knee osteoarthritis (OA) severity. DESIGN: Cross-sectional exploratory analysis of 164 participants with medial knee OA. Radiographic severity was classified as mild (grade 2), moderate (grade 3) or severe (grade 4) using the Kellgren & Lawrence (KL) scale. Walking knee pain was assessed using an 11-point numerical rating scale. External knee adduction moment (external KAM) and internal muscle forces were used to calculate medial, lateral and total KCFs using a musculoskeletal computational model. Force-time series across stance phase of gait were compared across KL grades using Statistical Parametric Mapping. Associations between KCFs and pain across KL grades were assessed using linear models. RESULTS: Medial KCFs during early and middle stance were higher in participants with KL3 and KL4 compared to those with KL2. In contrast, lateral KCFs were higher in those with KL2 compared to KL3 and KL4 in middle to late stance. The external loading component (i.e., KAM) of the medial KCF during middle to late stance was also greater in participants with KL3 and KL4 compared to those with KL2, whereas the internal (i.e., muscle) component was greater in those with KL3 and KL4 compared to KL3 during early stance. There were no associations between medial KCF and knee pain in any KL grade. CONCLUSIONS: Medial and lateral KCFs differ between mild, moderate and severe radiographic knee OA but are not associated with knee pain severity for any radiographic OA grade.
  • Item
    No Preview Available
    Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume
    Hipsley, A ; Hall, M ; Saxby, DJ ; Bennell, KL ; Wang, X ; Bryant, AL (SPRINGER, 2022-06)
    PURPOSE: Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology. METHODS: The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18-40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°-50°, 50°-40°, 40°-30°, 30°-20°, 20°-10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression. RESULTS: In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°-50° and 50°-40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume. CONCLUSION: Higher quadriceps strength at knee flexion angles of 60°-40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes. LEVEL OF EVIDENCE: III.
  • Item
    Thumbnail Image
    The effect of biomechanical foot-based interventions on patellofemoral joint loads during gait in adults with and without patellofemoral pain or osteoarthritis: a systematic review protocol
    Kayll, SAA ; Hinman, RSS ; Bennell, KLL ; Bryant, ALL ; Rowe, PLL ; Paterson, KLL (BMC, 2022-12-13)
    BACKGROUND: Patellofemoral pain is highly prevalent across the lifespan, and a significant proportion of people report unfavourable outcomes years after diagnosis. Previous research has implicated patellofemoral joint loading during gait in patellofemoral pain and its sequelae, patellofemoral osteoarthritis. Biomechanical foot-based interventions (e.g., footwear, insoles, orthotics, taping or bracing) can alter patellofemoral joint loads by reducing motions at the foot that increase compression between the patella and underlying femur via coupling mechanisms, making them a promising treatment option. This systematic review will summarise the evidence about the effect of biomechanical foot-based interventions on patellofemoral joint loads during gait in adults with and without patellofemoral pain and osteoarthritis. METHODS: MEDLINE (Ovid), the Cumulative Index to Nursing and Allied Health Literature CINAHL, The Cochrane Central Register of Controlled Trials (CENTRAL), SPORTdiscus (EBSCO) and Embase (Ovid) will be searched. Our search strategy will include terms related to 'patellofemoral joint', 'loads' and 'biomechanical foot-based interventions'. We will include studies published in the English language that assess the effect of biomechanical foot-based interventions on patellofemoral joint loads, quantified by patellofemoral joint pressure, patellofemoral joint reaction force and/or knee flexion moment. Two reviewers will independently screen titles and abstracts, complete full-text reviews, and extract data from included studies. Two reviewers will assess study quality using the Revised Cochrane Risk of Bias (RoB 2) tool or the Cochrane Risk Of Bias In Non-Randomized Studies - of Interventions (ROBINS-I) tool. We will provide a synthesis of the included studies' characteristics and results. If three or more studies are sufficiently similar in population and intervention, we will pool the data to conduct a meta-analysis and report findings as standardised mean differences with 95% confidence intervals. If a meta-analysis cannot be performed, we will conduct a narrative synthesis of the results and produce forest plots for individual studies. DISCUSSION: This protocol outlines the methods of a systematic review that will determine the effect of biomechanical foot-based interventions on patellofemoral joint loads. Our findings will inform clinical practice by identifying biomechanical foot-based interventions that reduce or increase patellofemoral joint loads, which may aid the treatment of adults with patellofemoral pain and osteoarthritis. TRIAL REGISTRATION: Registered with PROSPERO on the 4th of May 2022 (CRD42022315207).
  • Item
    Thumbnail Image
    Patellar cartilage increase following ACL reconstruction with and without meniscal pathology: a two-year prospective MRI morphological study
    Wang, X ; Bennell, KL ; Wang, Y ; Fortin, K ; Saxby, DJ ; Killen, BA ; Wrigley, T ; Cicuttini, FM ; Van Ginckel, A ; Lloyd, DG ; Feller, JA ; Vertullo, CJ ; Whitehead, T ; Gallie, P ; Bryant, AL (BMC, 2021-10-28)
    BACKGROUND: Anterior cruciate ligament reconstruction (ACLR) together with concomitant meniscal injury are risk factors for the development of tibiofemoral (TF) osteoarthritis (OA), but the potential effect on the patellofemoral (PF) joint is unclear. The aim of this study was to: (i) investigate change in patellar cartilage morphology in individuals 2.5 to 4.5 years after ACLR with or without concomitant meniscal pathology and in healthy controls, and (ii) examine the association between baseline patellar cartilage defects and patellar cartilage volume change. METHODS: Thirty two isolated ACLR participants, 25 ACLR participants with combined meniscal pathology and nine healthy controls underwent knee magnetic resonance imaging (MRI) with 2-year intervals (baseline = 2.5 years post-ACLR). Patellar cartilage volume and cartilage defects were assessed from MRI using validated methods. RESULTS: Both ACLR groups showed patellar cartilage volume increased over 2 years (p < 0.05), and isolated ACLR group had greater annual percentage cartilage volume increase compared with controls (mean difference 3.6, 95% confidence interval (CI) 1.0, 6.3%, p = 0.008) and combined ACLR group (mean difference 2.2, 95% CI 0.2, 4.2%, p = 0.028). Patellar cartilage defects regressed in the isolated ACLR group over 2 years (p = 0.02; Z = - 2.33; r = 0.3). Baseline patellar cartilage defect score was positively associated with annual percentage cartilage volume increase (Regression coefficient B = 0.014; 95% CI 0.001, 0.027; p = 0.03) in the pooled ACLR participants. CONCLUSIONS: Hypertrophic response was evident in the patellar cartilage of ACLR participants with and without meniscal pathology. Surprisingly, the increase in patellar cartilage volume was more pronounced in those with isolated ACLR. Although cartilage defects stabilised in the majority of ACLR participants, the severity of patellar cartilage defects at baseline influenced the magnitude of the cartilage hypertrophic response over the subsequent ~ 2 years.
  • Item
    Thumbnail Image
    Tibiofemoral joint structural change from 2.5 to 4.5years following ACL reconstruction with and without combined meniscal pathology
    Wang, X ; Bennell, KL ; Wang, Y ; Wrigley, TV ; Van Ginckel, A ; Fortin, K ; Saxby, DJ ; Cicuttini, FM ; Lloyd, DG ; Vertullo, CJ ; Feller, JA ; Whitehead, T ; Gallie, P ; Bryant, AL (BMC, 2019-07-04)
    BACKGROUND: People who have had anterior cruciate ligament reconstruction (ACLR) are at a high risk of developing tibiofemoral joint (TFJ) osteoarthritis (OA), with concomitant meniscal injury elevating this risk. This study aimed to investigate OA-related morphological change over 2 years in the TFJ among individuals who have undergone ACLR with or without concomitant meniscal pathology and in healthy controls. A secondary aim was to examine associations of baseline TFJ cartilage defects and bone marrow lesions (BML) scores with tibial cartilage volume change in ACLR groups. METHODS: Fifty seven ACLR participants aged 18-40 years (32 isolated ACLR, 25 combined meniscal pathology) underwent knee magnetic resonance imaging (MRI) 2.5 and 4.5 years post-surgery. Nine healthy controls underwent knee MRI at the ~ 2-year intervals. Tibial cartilage volume, TFJ cartilage defects and BMLs were assessed from MRI. RESULTS: For both ACLR groups, medial and lateral tibial cartilage volume increased over 2 years (P <  0.05). Isolated ACLR group had greater annual percentage increase in lateral tibial cartilage volume compared with controls and with the combined group (P = 0.03). Cartilage defects remained unchanged across groups. Both ACLR groups showed more lateral tibia BML regression compared with controls (P = 0.04). Baseline cartilage defects score was positively associated with cartilage volume increase at lateral tibia (P = 0.002) while baseline BMLs score was inversely related to medial tibia cartilage volume increase (P = 0.001) in the pooled ACLR group. CONCLUSIONS: Tibial cartilage hypertrophy was apparent in ACLR knees from 2.5 to 4.5 years post-surgery and was partly dependent upon meniscal status together with the nature and location of the underlying pathology at baseline. Magnitude and direction of change in joint pathologies (i.e., cartilage defects, BMLs) were less predictable and either remained stable or improved over follow-up.
  • Item
    Thumbnail Image
    Differences and mechanisms underpinning a change in the knee flexion moment while running in stability and neutral footwear among young females
    Sayer, TA ; Hinman, RS ; Paterson, KL ; Bennell, KL ; Fortin, K ; Kasza, J ; Bryant, AL (BMC, 2019-01-08)
    BACKGROUND: Higher peak external knee flexion moments (KFM) during running has been observed in healthy people wearing athletic footwear compared to barefoot, which may increase risk of knee pathologies such as patellofemoral pain. Currently, no studies have examined whether stability and neutral style athletic shoes influence the peak KFM differently, or explored the underlying biomechanical mechanisms by which footwear alters peak KFM in young females. METHODS: Lower limb biomechanics of sixty girls aged between 10 and 25 years old were collected while running in footwear (both stability and neutral) and barefoot. The external peak KFM, sagittal plane kinematics, sagittal plane knee ground reaction force (GRF) lever arm and sagittal plane resultant GRF magnitude were analysed by repeated measures Analysis of Variance. Linear mixed models were fit to identify predictors of a change in peak KFM, and to determine if the effects of these predictors differed between footwear conditions. RESULTS: The peak KFM was higher wearing both shoe styles compared to barefoot (p < 0.001), while no between-shoe differences were found (p > 0.05). Both shoes also increased kinematic variables at the hip, knee, and ankle (p < 0.05). When all these variables were entered into the mixed model, only a change in the knee-GRF lever arm was predictive of a change in peak KFM wearing shoes compared to barefoot (p < 0.001). CONCLUSION: These findings provide evidence that stability and neutral shoes increase peak KFM compared to barefoot, which is associated with a change in the knee-GRF lever arm rather than a change in lower limb kinematics. Future studies may consider manipulating footwear characteristics to reduce the knee-GRF lever arm in an effort to reduce peak KFM and the potential risk of patellofemoral pain.