Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Cortical thickness estimation in longitudinal stroke studies: A comparison of 3 measurement methods
    Li, Q ; Pardoe, H ; Lichter, R ; Werden, E ; Raffelt, A ; Cumming, T ; Brodtmann, A (ELSEVIER SCI LTD, 2015)
    There is considerable controversy about the causes of cognitive decline after stroke, with evidence for both the absence and coexistence of Alzheimer pathology. A reduction in cortical thickness has been shown to be an important biomarker for the progression of many neurodegenerative diseases, including Alzheimer's disease (AD). However, brain volume changes following stroke are not well described. Cortical thickness estimation presents an ideal way to detect regional and global post-stroke brain atrophy. In this study, we imaged a group of patients in the first month after stroke and at 3 months. We compared three methods of estimating cortical thickness on unmasked images: one surface-based (FreeSurfer) and two voxel-based methods (a Laplacian method and a registration method, DiRecT). We used three benchmarks for our analyses: accuracy of segmentation (especially peri-lesional performance), reproducibility, and biological validity. We found important differences between these methods in cortical thickness values and performance in high curvature areas and peri-lesional regions, but similar reproducibility metrics. FreeSurfer had less reliance on manual boundary correction than the other two methods, while reproducibility was highest in the Laplacian method. A discussion of the caveats for each method and recommendations for use in a stroke population is included. We conclude that both surface- and voxel-based methods are valid for estimating cortical thickness in stroke populations.
  • Item
    Thumbnail Image
    Structural MRI markers of brain aging early after ischemic stroke
    Werden, E ; Cumming, T ; Li, Q ; Bird, L ; Veldsman, M ; Pardoe, HR ; Jackson, G ; Donnan, GA ; Brodtmann, A (LIPPINCOTT WILLIAMS & WILKINS, 2017-07-11)
    OBJECTIVE: To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. METHODS: Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. RESULTS: First-ever stroke was associated with smaller hippocampal volume (p = 0.025) and greater WMH volume (p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke (p = 0.017) and controls (p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls (p = 0.056), but the association became significant after further adjustment for atrial fibrillation (p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. CONCLUSIONS: Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury.