Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Brain motor control assessment of upper limb function in patients with spinal cord injury
    Zoghi, M ; Galea, M ; Morgan, D (TAYLOR & FRANCIS LTD, 2016-03)
    BACKGROUND: The brain motor control assessment (BMCA) for the upper limb has been developed to add resolution to the clinical evaluation in patients with spinal cord injury (SCI). BMCA is a surface electromyography (sEMG)-based measure of motor output from the central nervous system during a variety of reflex and voluntary motor tasks performed under strictly controlled conditions. METHOD: Nine participants were recruited and assessed four times over a period of 1 year in a prospective cohort study design. The sEMG of 15 muscles (7 muscles from each upper limb and rectus abdominis) were recorded throughout the following stages of the BMCA protocol: (i) relaxation, (ii) reinforcement maneuvers, (iii) voluntary tasks, (iv) tendon-tap reflex responses, (v) vibration responses. RESULTS: Similarity index (SI) values were significantly lower in the SCI group for unilateral shoulder abduction (P = 0.006) and adduction (P = 0.021), elbow extension (P = 0.038), wrist flexion/extension with palm up (P < 0.001; P < 0.001) and wrist flexion with palm down (P = 0.016). sEMG magnitudes were also significantly lower in the SCI group for wrist flexion/extension with palm up (P < 0.001; P = 0.042). SI changes over time were significant for tasks related to wrist joint (P = 0.002). CONCLUSION: Clinicians who are involved in rehabilitation of patients with SCI can use the BMCA to assess their patients' motor control abilities and monitor their progression throughout their rehabilitation process. The results of this type of neurophysiological assessment might be useful to tailor therapeutic strategies for each patient.
  • Item
    Thumbnail Image
    Gait recovery following spinal cord injury in mice: Limited effect of treadmill training
    Battistuzzo, CR ; Rank, MM ; Flynn, JR ; Morgan, DL ; Callister, R ; Callister, RJ ; Galea, MP (TAYLOR & FRANCIS LTD, 2016)
    BACKGROUND: Several studies in rodents with complete spinal cord transections have demonstrated that treadmill training improves stepping movements. However, results from studies in incomplete spinal cord injured animals have been conflicting and questions regarding the training dosage after injury remain unresolved. OBJECTIVES: To assess the effects of treadmill-training regimen (20 minutes daily, 5 days a week) for 3, 6 or 9 weeks on the recovery of locomotion in hemisected SCI mice. METHODS: A randomized and blinded controlled experimental trial used a mouse model of incomplete spinal cord injury (SCI). After a left hemisection at T10, adult male mice were randomized to trained or untrained groups. The trained group commenced treadmill training one week after surgery and continued for 3, 6 or 9 weeks. Quantitative kinematic gait analysis was used to assess the spatiotemporal characteristics of the left hindlimb prior to injury and at 1, 4, 7 and 10 weeks post-injury. RESULTS: One week after injury there was no movement of the left hindlimb and some animals dragged their foot. Treadmill training led to significant improvements in step duration, but had limited effect on the hindlimb movement pattern. Locomotor improvements in trained animals were most evident at the hip and knee joints whereas recovery of ankle movement was limited, even after 9 weeks of treadmill training. CONCLUSION: These results demonstrate that treadmill training may lead to only modest improvement in recovery of hindlimb movement after incomplete spinal cord injury in mice.
  • Item
    Thumbnail Image
    Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function
    Wu, W ; Lee, PVS ; Bryant, AL ; Galea, M ; Ackland, DC (ELSEVIER SCI LTD, 2016-11-07)
    Upper limb muscle force estimation using Hill-type muscle models depends on musculotendon parameter values, which cannot be readily measured non-invasively. Generic and scaled-generic parameters may be quickly and easily employed, but these approaches do not account for an individual subject's joint torque capacity. The objective of the present study was to develop a subject-specific experimental testing and modeling framework to evaluate shoulder muscle and joint function during activities of daily living, and to assess the capacity of generic and scaled-generic musculotendon parameters to predict muscle and joint function. Three-dimensional musculoskeletal models of the shoulders of 6 healthy subjects were developed to calculate muscle and glenohumeral joint loading during abduction, flexion, horizontal flexion, nose touching and reaching using subject-specific, scaled-generic and generic musculotendon parameters. Muscle and glenohumeral joint forces calculated using generic and scaled-generic models were significantly different to those of subject-specific models (p<0.05), and task dependent; however, scaled-generic model calculations of shoulder glenohumeral joint force demonstrated better agreement with those of subject-specific models during abduction and flexion. Muscles in generic musculoskeletal models operated further from the plateau of their force-length curves than those of scaled-generic and subject-specific models, while muscles in subject-specific models operated over a wider region of their force length curves than those of the generic or scaled-generic models, reflecting diversity of subject shoulder strength. The findings of this study suggest that generic and scaled-generic musculotendon parameters may not provide sufficient accuracy in prediction of shoulder muscle and joint loading when compared to models that employ subject-specific parameter-estimation approaches.
  • Item
    Thumbnail Image
    Effects Of treadmill training on hindlimb muscles of spinal cord-injured mice
    Battistuzzo, CR ; Rank, MM ; Flynn, JR ; Morgan, DL ; Callister, R ; Callister, RJ ; Galea, MP (WILEY, 2017-02)
    INTRODUCTION: Treadmill training is known to prevent muscle atrophy after spinal cord injury (SCI), but the training duration required to optimize recovery has not been investigated. METHODS: Hemisected mice were randomized to 3, 6, or 9 weeks of training or no training. Muscle fiber type composition and fiber cross-sectional area (CSA) of medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) were assessed using ATPase histochemistry. RESULTS: Muscle fiber type composition of SCI animals did not change with training. However, 9 weeks of training increased the CSA of type IIB and IIX fibers in TA and MG muscles. CONCLUSIONS: Nine weeks of training after incomplete SCI was effective in preventing atrophy of fast-twitch muscles, but there were limited effects on slow-twitch muscles and muscle fiber type composition. These data provide important evidence of the benefits of exercising paralyzed limbs after SCI. Muscle Nerve, 2016 Muscle Nerve 55: 232-242, 2017.