Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Nasal Resistance Is Elevated in People with Tetraplegia and Is Reduced by Topical Sympathomimetic Administration
    Gainche, L ; Berlowitz, DJ ; LeGuen, M ; Ruehland, WR ; O'Donoghue, FJ ; Trinder, J ; Graco, M ; Schembri, R ; Eckert, DJ ; Rochford, PD ; Jordan, AS (AMER ACAD SLEEP MEDICINE, 2016)
    STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is common in individuals with tetraplegia and associated with adverse health outcomes. The causes of the high prevalence of OSA in this population are unknown, but it is important to understand as standard treatments are poorly tolerated in tetraplegia. Nasal congestion is common in tetraplegia, possibly because of unopposed parasympathetic activity. Further, nasal obstruction can induce OSA in healthy individuals. We therefore aimed to compare nasal resistance before and after topical administration of a sympathomimetic between 10 individuals with tetraplegia (T) and 9 able-bodied (AB) controls matched for OSA severity, gender, and age. METHODS: Nasal, pharyngeal, and total upper airway resistance were calculated before and every 2 minutes following delivery of ≈0.05 mL of 0.5% atomized phenylephrine to the nostrils and pharyngeal airway. The surface tension of the upper airway lining liquid was also assessed. RESULTS: At baseline, individuals with tetraplegia had elevated nasal resistance (T = 7.0 ± 1.9, AB = 3.0 ± 0.6 cm H2O/L/s), that rapidly fell after phenylephrine (T = 2.3 ± 0.4, p = 0.03 at 2 min) whereas the able-bodied did not change (AB = 2.5 ± 0.5 cm H2O/L/s, p = 0.06 at 2 min). Pharyngeal resistance was non-significantly higher in individuals with tetraplegia than controls at baseline (T = 2.6 ± 0.9, AB = 1.2 ± 0.4 cm H2O/L/s) and was not altered by phenylephrine in either group. The surface tension of the upper airway lining liquid did not differ between groups (T = 64.3 ± 1.0, AB = 62.7 ± 0.6 mN/m). CONCLUSIONS: These data suggest that the unopposed parasympathetic activity in tetraplegia increases nasal resistance, potentially contributing to the high occurrence of OSA in this population.
  • Item
    Thumbnail Image
    Magnetic resonance imaging of the upper airway in patients with quadriplegia and obstructive sleep apnea
    O'donoghue, FJ ; Meaklim, H ; Bilston, L ; Hatt, A ; Connelly, A ; Jackson, G ; Farquharson, S ; Sutherland, K ; Cistulli, PA ; Brown, DJ ; Berlowitz, DJ (WILEY, 2018-08)
    The aim of this study was to investigate upper airway anatomy in quadriplegics with obstructive sleep apnea. Fifty subjects were recruited from three hospitals in Australia: people with quadriplegia due to spinal cord injury and obstructive sleep apnea (n = 11), able-bodied people with obstructive sleep apnea (n = 18), and healthy, able-bodied controls (n = 19). All underwent 3-Tesla magnetic resonance imaging of their upper airway. A subgroup (n = 34) received a topical vasoconstrictor, phenylephrine and post-phenylephrine magnetic resonance imaging. Mixed-model analysis indicated no significant differences in total airway lumen volume between the three groups (P = 0.086). Spinal cord injury-obstructive sleep apnea subjects had a significantly larger volume of soft palate (P = 0.020) and retroglossal lateral pharyngeal walls (P = 0.043) than able-bodied controls. Able-bodied-obstructive sleep apnea subjects had a smaller mandible volume than spinal cord injury-obstructive sleep apnea subjects and able-bodied control subjects (P = 0.036). No differences were seen in airway length between groups when controlling for height (P = 0.055). There was a marginal increase in velopharyngeal volume across groups post-phenylephrine (P = 0.050), and post hoc testing indicated the difference was confined to the able-bodied-obstructive sleep apnea group (P < 0.001). No other upper airway structures showed significant changes with phenylephrine administration. In conclusion, people with obstructive sleep apnea and quadriplegia do not have a structurally smaller airway than able-bodied subjects. They did, however, have greater volumes of soft palate and lateral pharyngeal walls, possibly due to greater neck fat deposition. The acute response to upper airway topical vasoconstriction was not enhanced in those with obstructive sleep apnea and quadriplegia. Changes in upper airway anatomy likely contribute to the high incidence in obstructive sleep apnea in quadriplegic subjects.
  • Item
    Thumbnail Image
    Genioglossus reflex responses to negative upper airway pressure are altered in people with tetraplegia and obstructive sleep apnoea
    Wijesuriya, NS ; Gainche, L ; Jordan, AS ; Berlowitz, DJ ; LeGuen, M ; Rochford, PD ; O'Donoghue, FJ ; Ruehland, WR ; Carberry, JC ; Butler, JE ; Eckert, DJ (WILEY, 2018-07-15)
    KEY POINTS: Protective reflexes in the throat area (upper airway) are crucial for breathing. Impairment of these reflexes can cause breathing problems during sleep such as obstructive sleep apnoea (OSA). OSA is very common in people with spinal cord injury for unknown reasons. This study shows major changes in protective reflexes that serve to keep the upper airway open in response to suction pressures in people with tetraplegia and OSA. These results help us understand why OSA is so common in people with tetraplegia and provide new insight into how protective upper airway reflexes work more broadly. ABSTRACT: More than 60% of people with tetraplegia have obstructive sleep apnoea (OSA). However, the specific causes are unknown. Genioglossus, the largest upper-airway dilator muscle, is important in maintaining upper-airway patency. Impaired genioglossus muscle function following spinal cord injury may contribute to OSA. This study aimed to determine if genioglossus reflex responses to negative upper-airway pressure are altered in people with OSA and tetraplegia compared to non-neurologically impaired able-bodied individuals with OSA. Genioglossus reflex responses measured via intramuscular electrodes to ∼60 brief (250 ms) pulses of negative upper-airway pressure (∼-15 cmH2 O at the mask) were compared between 13 participants (2 females) with tetraplegia plus OSA and 9 able-bodied controls (2 females) matched for age and OSA severity. The initial short-latency excitatory reflex response was absent in 6/13 people with tetraplegia and 1/9 controls. Genioglossus reflex inhibition in the absence of excitation was observed in three people with tetraplegia and none of the controls. When the excitatory response was present, it was significantly delayed in the tetraplegia group compared to able-bodied controls: excitation onset latency (mean ± SD) was 32 ± 16 vs. 18 ± 9 ms, P = 0.045; peak excitation latency was 48 ± 17 vs. 33 ± 8 ms, P = 0.038. However, when present, amplitude of the excitation response was not different between groups, 195 ± 26 vs. 219 ± 98% at baseline, P = 0.55. There are major differences in genioglossus reflex morphology and timing in response to rapid changes in airway pressure in people with tetraplegia and OSA. Altered genioglossus function may contribute to the increased risk of OSA in people with tetraplegia. The precise mechanisms mediating these differences are unknown.
  • Item
    Thumbnail Image
    Auto-titrating continuous positive airway pressure treatment for obstructive sleep apnoea after acute quadriplegia (COSAQ): study protocol for a randomized controlled trial
    Berlowitz, DJ ; Ayas, N ; Barnes, M ; Brown, DJ ; Cistulli, PA ; Geraghty, T ; Graham, A ; Lee, BB ; Morris, M ; O'Donoghue, F ; Rochford, PD ; Ross, J ; Singhal, B ; Spong, J ; Wadsworth, B ; Pierce, RJ (BMC, 2013-06-19)
    BACKGROUND: Quadriplegia is a severe, catastrophic injury that predominantly affects people early in life, resulting in lifelong physical disability. Obstructive sleep apnoea is a direct consequence of quadriplegia and is associated with neurocognitive deficits, sleepiness and reduced quality of life. The usual treatment for sleep apnoea is nasal continuous positive airway pressure (CPAP); however, this is poorly tolerated in quadriplegia. To encourage patients to use this therapy, we have to demonstrate that the benefits outweigh the inconvenience. We therefore propose a prospective, multinational randomized controlled trial of three months of CPAP for obstructive sleep apnoea after acute quadriplegia. METHODS/DESIGN: Specialist spinal cord injury centres across Australia, New Zealand, the UK and Canada will recruit medically stable individuals who have sustained a (new) traumatic quadriplegia (complete or incomplete second cervical to first thoracic level lesions). Participants will be screened for obstructive sleep apnoea using full, portable sleep studies. Those with an apnoea hypopnoea index greater than 10 per hour will proceed to an initial three-night trial of CPAP. Those who can tolerate CPAP for at least 4 hours on at least one night of the initial trial will be randomized to either usual care or a 3-month period of auto-titrating CPAP. The primary hypothesis is that nocturnal CPAP will improve neuropsychological functioning more than usual care alone. The secondary hypothesis is that the magnitude of improvement of neuropsychological function will be predicted by the severity of baseline sleepiness measures, sleep fragmentation and sleep apnoea. Neuropsychological tests and full polysomnography will be performed at baseline and 3 months with interim measures of sleepiness and symptoms of autonomic dysfunction measured weekly. Spirometry will be performed monthly. Neuropsychological tests will be administered by blinded assessors. Recruitment commenced in July 2009. DISCUSSION: The results of this trial will demonstrate the effect of nocturnal CPAP treatment of obstructive sleep apnoea in acute quadriplegia. If CPAP can improve neurocognitive function after injury, it is likely that rehabilitation and subsequent community participation will be substantially improved for this group of predominantly young and severely physically disabled people. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry ACTRN12605000799651.
  • Item
    Thumbnail Image
    Light sensors for objective light measurement in ambulatory polysomnography
    Schembri, R ; Spong, J ; Peters, A ; Rochford, P ; Wilksch, P ; O'Donoghue, FJ ; Greenwood, KM ; Barnes, M ; Kennedy, GA ; Berlowitz, DJ ; Curcio, G (PUBLIC LIBRARY SCIENCE, 2017-11-16)
    Ambulatory polysomnography (PSG) does not commonly include an objective measure of light to determine the time of lights off (Loff), and thus cannot be used to calculate important indices such as sleep onset latency and sleep efficiency. This study examined the technical specifications and appropriateness of a prototype light sensor (LS) for use in ambulatory Compumedics Somte PSG.Two studies were conducted. The first examined the light measurement characteristics of the LS when used with a portable PSG device, specifically recording trace range, linearity, sensitivity, and stability. This involved the LS being exposed to varying incandescent and fluorescent light levels in a light controlled room. Secondly, the LS was trialled in 24 home and 12 hospital ambulatory PSGs to investigate whether light levels in home and hospital settings were within the recording range of the LS, and to quantify the typical light intensity reduction at the time of Loff. A preliminary exploration of clinical utility was also conducted. Linearity between LS voltage and lux was demonstrated, and the LS trace was stable over 14 hours of recording. The observed maximum voltage output of the LS/PSG device was 250 mV, corresponding to a maximum recording range of 350 lux and 523 lux for incandescent and fluorescent light respectively. At the time of Loff, light levels were within the recording range of the LS, and on average dropped by 72 lux (9-245) in the home and 76 lux (4-348) in the hospital setting. Results suggest that clinical utility was greatest in hospital settings where patients are less mobile. The LS was a simple and effective objective marker of light level in portable PSG, which can be used to identify Loff in ambulatory PSG. This allows measurement of additional sleep indices and support with clinical decisions.