Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Neurobehaviour at term-equivalent age and neurodevelopmental outcomes at 2 years in infants born moderate-to-late preterm
    Spittle, AJ ; Walsh, JM ; Potter, C ; Mcinnes, E ; Olsen, JE ; Lee, KJ ; Anderson, PJ ; Doyle, LW ; Cheong, JLY (WILEY, 2017-02)
    AIM: To examine the association between newborn neurobehavioural assessments and neurodevelopmental outcomes at 2 years in infants born moderate-to-late preterm (MLPT). METHOD: Two-hundred and one infants born MLPT (born 32-36+6 wks' gestation) were assessed with the Hammersmith Neonatal Neurological Examination (HNNE) and NICU Network Neurobehavioral Scale (NNNS), with suboptimal performance defined as scores lower than the 10th centile. Development was assessed at 2 years corrected age with the Bayley Scales of Infant and Toddler Development 3rd Edition, with delay defined as scores less than 1 standard deviation (SD) below the mean. The relationships between neurobehaviour at term and Bayley-III cognitive, language, and motor scales at 2 years were examined using linear regression. RESULTS: Increased odds for cognitive delay were associated with suboptimal HNNE total scores (odds ratio [OR] 2.66; 95% confidence interval [CI] 1.14-6.23, p=0.020) and suboptimal NNNS excitability (OR 3.01; 95% CI 1.33-6.82, p=0.008) and lethargy (OR 4.05; 95% CI 1.75-9.31, p=0.001) scores. Suboptimal lethargy scores on the NNNS were associated with increased odds of language (OR 5.64; 95% CI 1.33-23.85, p=0.019) and motor delay (OR: 6.86; 95% CI 1.64-28.71, p=0.08). INTERPRETATION: Suboptimal performance on specific aspects of newborn neurobehavioural assessments is associated with neurodevelopmental delay at 2 years in children born MLPT.
  • Item
    Thumbnail Image
    Very preterm children at risk for developmental coordination disorder have brain alterations in motor areas
    Dewey, D ; Thompson, DK ; Kelly, CE ; Spittle, AJ ; Cheong, JLY ; Doyle, LW ; Anderson, PJ (WILEY, 2019-09)
    AIM: Brain alterations in very preterm children at risk for developmental coordination disorder were investigated. METHODS: Infants born very preterm with gestation age <30 weeks or birthweight <1250 g were recruited from Royal Women's Hospital Melbourne from 2001 to 2003. Volumetric imaging was performed at term equivalent age; at seven years, volumetric imaging and diffusion tensor imaging were performed. At seven years, 53 of 162 children without cerebral palsy had scores ≤16th percentile on the Movement Assessment Battery for Children-Second Edition and were considered at risk for developmental coordination disorder. RESULTS: At term equivalent age, smaller brain volumes were found for total brain tissue, cortical grey matter, cerebellum, caudate accumbens, pallidum and thalamus in children at risk for developmental coordination disorder (p < 0.05); similar patterns were present at seven years. There was no evidence for catch-up brain growth in at-risk children. At seven years, at-risk children displayed altered microstructural organisation in many white matter tracts (p < 0.05). CONCLUSION: Infants born very preterm at risk for developmental coordination disorder displayed smaller brain volumes at term equivalent age and seven years, and altered white matter microstructure at seven years, particularly in motor areas. There was no catch-up growth from infancy to seven years.
  • Item
    Thumbnail Image
    Brain structure and neurological and behavioural functioning in infants born preterm
    Kelly, CE ; Thompson, DK ; Cheong, JLY ; Chen, J ; Olsen, JE ; Eeles, AL ; Walsh, JM ; Seal, ML ; Anderson, PJ ; Doyle, LW ; Spittle, AJ (WILEY, 2019-07)
    AIM: To examine: (1) relationships between brain structure, and concurrently assessed neurological and behavioural functioning, in infants born preterm at term-equivalent age (TEA; approximately 38-44wks); and (2) whether brain structure-function relationships differ between infants born very (24-29wks) and moderate-late (32-36wks) preterm. METHOD: A total of 257 infants (91 very preterm, 166 moderate-late preterm; 120 males, 137 females) had structural magnetic resonance imaging (MRI) and neurological and behavioural assessments (Prechtl's general movements assessment, Neonatal Intensive Care Unit Network Neurobehavioral Scale [NNNS] and Hammersmith Neonatal Neurological Examination [HNNE]). Two hundred and sixty-three infants (90 very preterm, 173 moderate-late preterm; 131 males, 132 females) had diffusion MRI and assessments. Associations were investigated between assessment scores and global brain volumes using linear regressions, regional brain volumes using Voxel-Based Morphometry, and white matter microstructure using Tract-Based Spatial Statistics. RESULTS: Suboptimal scores on some assessments were associated with lower fractional anisotropy and/or higher axial, radial, and mean diffusivities in some tracts: NNNS attention and reflexes, and HNNE total score and tone, were associated with the corpus callosum and optic radiation; NNNS quality of movement with the corona radiata; HNNE abnormal signs with several major tracts. Brain structure-function associations generally did not differ between the very and moderate-late preterm groups. INTERPRETATION: White matter microstructural alterations may be associated with suboptimal neurological and behavioural performance in some domains at TEA in infants born preterm. Brain structure-function relationships are similar for infants born very preterm and moderate-late preterm. WHAT THIS PAPER ADDS: Brain volume is not related to neurological/behavioural function in infants born preterm at term. White matter microstructure is related to some neurological/behavioural domains at term. Brain-behaviour relationships are generally similar for infants born very preterm and moderate-late preterm.
  • Item
    Thumbnail Image
    Long term follow up of high risk children: who, why and how?
    Doyle, LW ; Anderson, PJ ; Battin, M ; Bowen, JR ; Brown, N ; Callanan, C ; Campbell, C ; Chandler, S ; Cheong, J ; Darlow, B ; Davis, PG ; DePaoli, T ; French, N ; McPhee, A ; Morris, S ; O'Callaghan, M ; Rieger, I ; Roberts, G ; Spittle, AJ ; Wolke, D ; Woodward, LJ (BMC, 2014-11-17)
    BACKGROUND: Most babies are born healthy and grow and develop normally through childhood. There are, however, clearly identifiable high-risk groups of survivors, such as those born preterm or with ill-health, who are destined to have higher than expected rates of health or developmental problems, and for whom more structured and specialised follow-up programs are warranted. DISCUSSION: This paper presents the results of a two-day workshop held in Melbourne, Australia, to discuss neonatal populations in need of more structured follow-up and why, in addition to how, such a follow-up programme might be structured. Issues discussed included the ages of follow-up, and the personnel and assessment tools that might be required. Challenges for translating results into both clinical practice and research were identified. Further issues covered included information sharing, best practice for families and research gaps. SUMMARY: A substantial minority of high-risk children has long-term medical, developmental and psychological adverse outcomes and will consume extensive health and education services as they grow older. Early intervention to prevent adverse outcomes and the effective integration of services once problems are identified may reduce the prevalence and severity of certain outcomes, and will contribute to an efficient and effective use of health resources. The shared long-term goal for families and professionals is to work toward ensuring that high risk children maximise their potential and become productive and valued members of society.
  • Item
    Thumbnail Image
    Neurobehaviour between birth and 40 weeks' gestation in infants born <30 weeks' gestation and parental psychological wellbeing: predictors of brain development and child outcomes
    Spittle, AJ ; Thompson, DK ; Brown, NC ; Treyvaud, K ; Cheong, JLY ; Lee, KJ ; Pace, CC ; Olsen, J ; Allinson, LG ; Morgan, AT ; Seal, M ; Eeles, A ; Judd, F ; Doyle, LW ; Anderson, PJ (BMC, 2014-04-24)
    BACKGROUND: Infants born <30 weeks' gestation are at increased risk of long term neurodevelopmental problems compared with term born peers. The predictive value of neurobehavioural examinations at term equivalent age in very preterm infants has been reported for subsequent impairment. Yet there is little knowledge surrounding earlier neurobehavioural development in preterm infants prior to term equivalent age, and how it relates to perinatal factors, cerebral structure, and later developmental outcomes. In addition, maternal psychological wellbeing has been associated with child development. Given the high rate of psychological distress reported by parents of preterm children, it is vital we understand maternal and paternal wellbeing in the early weeks and months after preterm birth and how this influences the parent-child relationship and children's outcomes. Therefore this study aims to examine how 1) early neurobehaviour and 2) parental mental health relate to developmental outcomes for infants born preterm compared with infants born at term. METHODS/DESIGN: This prospective cohort study will describe the neurobehaviour of 150 infants born at <30 weeks' gestational age from birth to term equivalent age, and explore how early neurobehavioural deficits relate to brain growth or injury determined by magnetic resonance imaging, perinatal factors, parental mental health and later developmental outcomes measured using standardised assessment tools at term, one and two years' corrected age. A control group of 150 healthy term-born infants will also be recruited for comparison of outcomes. To examine the effects of parental mental health on developmental outcomes, both parents of preterm and term-born infants will complete standardised questionnaires related to symptoms of anxiety, depression and post-traumatic stress at regular intervals from the first week of their child's birth until their child's second birthday. The parent-child relationship will be assessed at one and two years' corrected age. DISCUSSION: Detailing the trajectory of infant neurobehaviour and parental psychological distress following very preterm birth is important not only to identify infants most at risk, further understand the parental experience and highlight potential times for intervention for the infant and/or parent, but also to gain insight into the effect this has on parent-child interaction and child development.
  • Item
    Thumbnail Image
    Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age
    Granger, C ; Spittle, AJ ; Walsh, J ; Pyman, J ; Anderson, PJ ; Thompson, DK ; Lee, KJ ; Coleman, L ; Dagia, C ; Doyle, LW ; Cheong, J (BIOMED CENTRAL LTD, 2018-02-15)
    BACKGROUND: To explore the associations between histologic chorioamnionitis with brain injury, maturation and size on magnetic resonance imaging (MRI) of preterm infants at term equivalent age. METHODS: Preterm infants (23-36 weeks' gestational age) were recruited into two longitudinal cohort studies. Presence or absence of chorioamnionitis was obtained from placental histology and clinical data were recorded. MRI at term-equivalent age was assessed for brain injury (intraventricular haemorrhage, cysts, signal abnormalities), maturation (degree of myelination, gyral maturation) and size of cerebral structures (metrics and brain segmentation). Histologic chorioamnionitis was assessed as a predictor of MRI variables using linear and logistic regression, with adjustment for confounding perinatal variables. RESULTS: Two hundred and twelve infants were included in this study, 47 (22%) of whom had histologic chorioamnionitis. Histologic chorioamnionitis was associated with higher odds of intraventricular haemorrhage (odds ratio [OR] (95% confidence interval [CI]) = 7.4 (2.4, 23.1)), less mature gyral maturation (OR (95% CI) = 2.0 (1.0, 3.8)) and larger brain volume (mean difference in cubic centimeter (95% CI) of 14.1 (1.9, 26.2)); but all relationships disappeared following adjustment for perinatal variables. CONCLUSION: Histologic chorioamnionitis was not independently associated with IVH, less mature gyral maturation or brain volume at term-equivalent age in preterm infants.
  • Item
    Thumbnail Image
    Impact of extreme prematurity or extreme low birth weight on young adult health and well-being: the Victorian Infant Collaborative Study (VICS) 1991-1992 Longitudinal Cohort study protocol
    Cheong, JLY ; Wark, JD ; Cheung, MM ; Irving, L ; Burnett, AC ; Lee, KJ ; Garland, SM ; Smallwood, D ; Patton, GC ; Haikerwal, A ; Doyle, LW ; Cheong, J ; Anderson, C ; Anderson, P ; Bear, M ; Boland, R ; Burnett, A ; Callanan, C ; Carse, E ; Charlton, M ; Clarke, M ; Courtot, J ; Davis, N ; Doyle, L ; Duff, J ; Ellis, R ; Haikerwal, A ; Hickey, L ; Hayes, M ; Josev, E ; Kelly, E ; McDonald, M ; McInnes, E ; Novella, B ; Olsen, J ; Opie, G ; Roberts, G ; Scott, K ; Spittle, A ; Stevens, P ; Turner, A-M (BMJ PUBLISHING GROUP, 2019-05)
    INTRODUCTION: Infants born extremely preterm (EP, <28 weeks' gestation) or with extremely low birth weight (ELBW,<1000 g) in the era when surfactant has been available clinically are at high risk of health and developmental problems in childhood and adolescence. However, how their health and well-being may be affected in adulthood is not well known. This study aims to compare between EP/ELBW and normal birthweight (NBW) controls: (1) physical health, mental health and socioemotional functioning at 25 years of age and (2) trajectories of these outcomes from childhood to adulthood. In addition, this study aims to identify risk factors in pregnancy, infancy, childhood and adolescence for poor physical health and well-being in EP/ELBW young adults. METHODS AND ANALYSIS: The Victorian Infant Collaborative Study (VICS) is a prospective geographical cohort of all EP/ELBW survivors to 18 years of age born in the State of Victoria, Australia, from 1 January 1991 to 31 December 1992 (n=297) and contemporaneous term-born/NBW controls (n=262). Participants were recruited at birth and followed up at 2, 5, 8 and 18 years. This 25-year follow-up includes assessments of physical health (cardiovascular, respiratory and musculoskeletal), mental health and socioemotional functioning. Outcomes will be compared between the birth groups using linear and logistic regression, fitted using generalised estimating equations (GEEs). Trajectories of health outcomes from early childhood will be compared between the birth groups using linear mixed-effects models. Risk factors for adult outcomes will be assessed using linear and logistic regression (fitted using GEEs). ETHICS AND DISSEMINATION: This study was approved by the Human Research Ethics Committees of the Royal Women's Hospital, Mercy Hospital for Women, Monash Medical Centre and the Royal Children's Hospital, Melbourne. Study outcomes will be disseminated through conference presentations, peer-reviewed publications, the internet and social media.
  • Item
    Thumbnail Image
    Desikan-Killiany-Tourville Atlas Compatible Version of M-CRIB Neonatal Parcellated Whole Brain Atlas: The M-CRIB 2.0
    Alexander, B ; Loh, WY ; Matthews, LG ; Murray, AL ; Adamson, C ; Beare, R ; Chen, J ; Kelly, CE ; Anderson, PJ ; Doyle, LW ; Spittle, AJ ; Cheong, JLY ; Seal, ML ; Thompson, DK (FRONTIERS MEDIA SA, 2019-02-05)
    Our recently published M-CRIB atlas comprises 100 neonatal brain regions including 68 compatible with the widely-used Desikan-Killiany adult cortical atlas. A successor to the Desikan-Killiany atlas is the Desikan-Killiany-Tourville atlas, in which some regions with unclear boundaries were removed, and many existing boundaries were revised to conform to clearer landmarks in sulcal fundi. Our first aim here was to modify cortical M-CRIB regions to comply with the Desikan-Killiany-Tourville protocol, in order to offer: (a) compatibility with this adult cortical atlas, (b) greater labeling accuracy due to clearer landmarks, and (c) optimisation of cortical regions for integration with surface-based infant parcellation pipelines. Secondly, we aimed to update subcortical regions in order to offer greater compatibility with subcortical segmentations produced in FreeSurfer. Data utilized were the T2-weighted MRI scans in our M-CRIB atlas, for 10 healthy neonates (post-menstrual age at MRI 40-43 weeks, four female), and corresponding parcellated images. Edits were performed on the parcellated images in volume space using ITK-SNAP. Cortical updates included deletion of frontal and temporal poles and 'Banks STS,' and modification of boundaries of many other regions. Changes to subcortical regions included the addition of 'ventral diencephalon,' and deletion of 'subcortical matter' labels. A detailed updated parcellation protocol was produced. The resulting whole-brain M-CRIB 2.0 atlas comprises 94 regions altogether. This atlas provides comparability with adult Desikan-Killiany-Tourville-labeled cortical data and FreeSurfer-labeed subcortical data, and is more readily adaptable for incorporation into surface-based neonatal parcellation pipelines. As such, it offers the ability to help facilitate a broad range of investigations into brain structure and function both at the neonatal time point and developmentally across the lifespan.
  • Item
    Thumbnail Image
    Characterisation of brain volume and microstructure at term-equivalent age in infants born across the gestational age spectrum
    Thompson, DK ; Kelly, CE ; Chen, J ; Beare, R ; Alexander, B ; Seal, ML ; Lee, KJ ; Matthews, LG ; Anderson, PJ ; Doyle, LW ; Cheong, JLY ; Spittle, AJ (ELSEVIER SCI LTD, 2019)
    BACKGROUND: Risk of morbidity differs between very preterm (VP; <32 weeks' gestational age (GA)), moderate preterm (MP; 32-33 weeks' GA), late preterm (LP; 34-36 weeks' GA), and full-term (FT; ≥37 weeks' GA) infants. However, brain structure at term-equivalent age (TEA; 38-44 weeks) remains to be characterised in all clinically important GA groups. We aimed to compare global and regional brain volumes, and regional white matter microstructure, between VP, MP, LP and FT groups at TEA, in order to establish the magnitude and anatomical locations of between-group differences. METHODS: Structural images from 328 infants (91 VP, 63 MP, 104 LP and 70 FT) were segmented into white matter, cortical grey matter, cerebrospinal fluid (CSF), subcortical grey matter, brainstem and cerebellum. Global tissue volumes were analysed, and additionally, cortical grey matter and white matter volumes were analysed at the regional level using voxel-based morphometry. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) images from 361 infants (92 VP, 69 MP, 120 LP and 80 FT) were analysed using Tract-Based Spatial Statistics. Statistical analyses involved examining the overall effect of GA group on global volumes (using linear regressions) and regional volumes and microstructure (using non-parametric permutation testing), as well performing post-hoc comparisons between the GA sub-groups. RESULTS: On global analysis, cerebrospinal fluid (CSF) volume was larger in all preterm sub-groups compared with the FT group. On regional analysis, volume was smaller in parts of the temporal cortical grey matter, and parts of the temporal white matter and corpus callosum, in all preterm sub-groups compared with the FT group. FA was lower, and RD and MD were higher in voxels located in much of the white matter in all preterm sub-groups compared with the FT group. The anatomical locations of group differences were similar for each preterm vs. FT comparison, but the magnitude and spatial extent of group differences was largest for the VP, followed by the MP, and then the LP comparison. Comparing within the preterm groups, the VP sub-group had smaller frontal and temporal grey and white matter volume, and lower FA and higher MD and RD within voxels in the approximate location of the corpus callosum compared with the MP sub-group. There were few volume and microstructural differences between the MP and LP sub-groups. CONCLUSION: All preterm sub-groups had atypical brain volume and microstructure at TEA when compared with a FT group, particularly for the CSF, temporal grey and white matter, and corpus callosum. In general, the groups followed a gradient, where the differences were most pronounced for the VP group, less pronounced for the MP group, and least pronounced for the LP group. The VP sub-group was particularly vulnerable compared with the MP and LP sub-groups.
  • Item
    Thumbnail Image
    Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation
    Beare, RJ ; Chen, J ; Kelly, CE ; Alexopoulos, D ; Smyser, CD ; Rogers, CE ; Loh, WY ; Matthews, LG ; Cheong, JLY ; Spittle, AJ ; Anderson, PJ ; Doyle, LW ; Inder, TE ; Seal, ML ; Thompson, DK (FRONTIERS MEDIA SA, 2016-03-29)
    Measuring the distribution of brain tissue types (tissue classification) in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation), which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM) software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF), hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T 2-weighted images of preterm infants (born ≤30 weeks' gestation) acquired at 30 weeks' corrected gestational age (n = 5), coronal T 2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5) and axial T 2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5). The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR) group, consisted of T 2-weighted images of preterm infants (born <30 weeks' gestation) acquired shortly after birth (n = 12), preterm infants acquired at term-equivalent age (n = 12), and healthy term-born infants (born ≥38 weeks' gestation) acquired within the first 9 days of life (n = 12). For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for the cortical gray matter for coronal images acquired at 30 weeks. This demonstrates that MANTiS' performance is competitive with existing techniques. For the WUNDeR dataset, mean Dice scores comparing MANTiS with manually edited segmentations demonstrated good agreement, where all scores were above 0.75, except for the hippocampus and amygdala. The results show that MANTiS is able to segment neonatal brain tissues well, even in images that have brain abnormalities common in preterm infants. MANTiS is available for download as an SPM toolbox from http://developmentalimagingmcri.github.io/mantis.