Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Preterm and term-equivalent age general movements and 1-year neurodevelopmental outcomes for infants born before 30weeks' gestation
    Olsen, JE ; Allinson, LG ; Doyle, LW ; Brown, NC ; Lee, KJ ; Eeles, AL ; Cheong, JLY ; Spittle, AJ (WILEY, 2018-01)
    AIM: To examine the associations between Prechtl's General Movements Assessment (GMA), conducted from birth to term-equivalent age, and neurodevelopmental outcomes at 12 months corrected age, in infants born very preterm. METHOD: One hundred and thirty-seven infants born before 30 weeks' gestation had serial GMA (categorized as 'normal' or 'abnormal') before term and at term-equivalent age. At 12 months corrected age, neurodevelopment was assessed using the Alberta Infant Motor Scale (AIMS); Neurological, Sensory, Motor, Developmental Assessment (NSMDA); and Touwen Infant Neurological Examination (TINE). The relationships between GMA at four time points and 12-month neurodevelopmental assessments were examined using regression models. RESULTS: Abnormal GMA at all time points were associated with worse continuous scores on the AIMS, NSMDA, and TINE (p<0.05). Abnormal GMA before term and at term-equivalent age were associated with increased odds of mild-severe dysfunction on the NSMDA (odds ratio [OR] 4.26, 95% confidence interval [CI] 1.55-11.71, p<0.01; and OR 4.16, 95% CI 1.55-11.17, p<0.01 respectively) and abnormal GMA before term with increased odds of suboptimal-abnormal motor function on the TINE (OR 2.75, 95% CI 1.10-6.85, p=0.03). INTERPRETATION: Abnormal GMA before term and at term-equivalent age were associated with worse neurodevelopment at 12 months corrected age in children born very preterm. WHAT THIS PAPER ADDS: Abnormal general movements before term predict developmental deficits at 1 year in infants born very preterm. General Movements Assessment before term identifies at-risk infants born very preterm.
  • Item
    Thumbnail Image
    Brain structure and neurological and behavioural functioning in infants born preterm
    Kelly, CE ; Thompson, DK ; Cheong, JLY ; Chen, J ; Olsen, JE ; Eeles, AL ; Walsh, JM ; Seal, ML ; Anderson, PJ ; Doyle, LW ; Spittle, AJ (WILEY, 2019-07)
    AIM: To examine: (1) relationships between brain structure, and concurrently assessed neurological and behavioural functioning, in infants born preterm at term-equivalent age (TEA; approximately 38-44wks); and (2) whether brain structure-function relationships differ between infants born very (24-29wks) and moderate-late (32-36wks) preterm. METHOD: A total of 257 infants (91 very preterm, 166 moderate-late preterm; 120 males, 137 females) had structural magnetic resonance imaging (MRI) and neurological and behavioural assessments (Prechtl's general movements assessment, Neonatal Intensive Care Unit Network Neurobehavioral Scale [NNNS] and Hammersmith Neonatal Neurological Examination [HNNE]). Two hundred and sixty-three infants (90 very preterm, 173 moderate-late preterm; 131 males, 132 females) had diffusion MRI and assessments. Associations were investigated between assessment scores and global brain volumes using linear regressions, regional brain volumes using Voxel-Based Morphometry, and white matter microstructure using Tract-Based Spatial Statistics. RESULTS: Suboptimal scores on some assessments were associated with lower fractional anisotropy and/or higher axial, radial, and mean diffusivities in some tracts: NNNS attention and reflexes, and HNNE total score and tone, were associated with the corpus callosum and optic radiation; NNNS quality of movement with the corona radiata; HNNE abnormal signs with several major tracts. Brain structure-function associations generally did not differ between the very and moderate-late preterm groups. INTERPRETATION: White matter microstructural alterations may be associated with suboptimal neurological and behavioural performance in some domains at TEA in infants born preterm. Brain structure-function relationships are similar for infants born very preterm and moderate-late preterm. WHAT THIS PAPER ADDS: Brain volume is not related to neurological/behavioural function in infants born preterm at term. White matter microstructure is related to some neurological/behavioural domains at term. Brain-behaviour relationships are generally similar for infants born very preterm and moderate-late preterm.
  • Item
    Thumbnail Image
    The Baby Moves smartphone app for General Movements Assessment: Engagement amongst extremely preterm and term-born infants in a state-wide geographical study
    Kwong, AKL ; Eeles, AL ; Olsen, JE ; Cheong, JLY ; Doyle, LW ; Spittle, AJ (WILEY, 2019-05)
    AIM: The Baby Moves smartphone application is designed for parents to video their infants' spontaneous movement for remote General Movements Assessment (GMA). We aimed to assess the engagement with Baby Moves amongst high- and low-risk infants' families and the socio-demographic variables related to engagement. METHODS: Families of extremely preterm (EP; <28 weeks' gestational age) or extremely low-birthweight (ELBW; <1000 g) infants and term-born controls from a state-wide geographical cohort study were asked to download Baby Moves. Baby Moves provided reminders and instructions to capture videos of their infants' general movements. Parents were surveyed about Baby Moves' usability. RESULTS: The parents of 451 infants (226 EP/ELBW; 225 control) were recruited; 416 (204 EP/ELBW; 212 control) downloaded Baby Moves, and 346 (158 EP/ELBW; 188 control) returned at least one scorable video for remote GMA. Fewer EP/ELBW families submitted a scorable video than controls (70 vs. 83%, respectively; odds ratio (OR) 0.48, 95% confidence interval (CI) 0.3-0.79, P = 0.003), but the difference diminished when adjusted for socio-demographic variables (OR 1.09, 95% CI 0.59-2.0, P = 0.79). Families who received government financial support (OR 0.28, 95% CI 0.1-0.78, P = 0.015), who spoke limited English at home (OR 0.39, 95% CI 0.22-0.69, P = 0.001) or with lower maternal education (OR 0.38, 95% CI 0.21-0.68, P = 0.001) were less likely to return a scorable video. Surveyed parents responded mostly positively to Baby Moves' usability. CONCLUSIONS: Most parents in this study successfully used Baby Moves to capture infant movements for remote GMA. Families of lower socio-demographic status used Baby Moves less.
  • Item
    Thumbnail Image
    Neurobehaviour between birth and 40 weeks' gestation in infants born <30 weeks' gestation and parental psychological wellbeing: predictors of brain development and child outcomes
    Spittle, AJ ; Thompson, DK ; Brown, NC ; Treyvaud, K ; Cheong, JLY ; Lee, KJ ; Pace, CC ; Olsen, J ; Allinson, LG ; Morgan, AT ; Seal, M ; Eeles, A ; Judd, F ; Doyle, LW ; Anderson, PJ (BMC, 2014-04-24)
    BACKGROUND: Infants born <30 weeks' gestation are at increased risk of long term neurodevelopmental problems compared with term born peers. The predictive value of neurobehavioural examinations at term equivalent age in very preterm infants has been reported for subsequent impairment. Yet there is little knowledge surrounding earlier neurobehavioural development in preterm infants prior to term equivalent age, and how it relates to perinatal factors, cerebral structure, and later developmental outcomes. In addition, maternal psychological wellbeing has been associated with child development. Given the high rate of psychological distress reported by parents of preterm children, it is vital we understand maternal and paternal wellbeing in the early weeks and months after preterm birth and how this influences the parent-child relationship and children's outcomes. Therefore this study aims to examine how 1) early neurobehaviour and 2) parental mental health relate to developmental outcomes for infants born preterm compared with infants born at term. METHODS/DESIGN: This prospective cohort study will describe the neurobehaviour of 150 infants born at <30 weeks' gestational age from birth to term equivalent age, and explore how early neurobehavioural deficits relate to brain growth or injury determined by magnetic resonance imaging, perinatal factors, parental mental health and later developmental outcomes measured using standardised assessment tools at term, one and two years' corrected age. A control group of 150 healthy term-born infants will also be recruited for comparison of outcomes. To examine the effects of parental mental health on developmental outcomes, both parents of preterm and term-born infants will complete standardised questionnaires related to symptoms of anxiety, depression and post-traumatic stress at regular intervals from the first week of their child's birth until their child's second birthday. The parent-child relationship will be assessed at one and two years' corrected age. DISCUSSION: Detailing the trajectory of infant neurobehaviour and parental psychological distress following very preterm birth is important not only to identify infants most at risk, further understand the parental experience and highlight potential times for intervention for the infant and/or parent, but also to gain insight into the effect this has on parent-child interaction and child development.
  • Item
    Thumbnail Image
    Continuum of neurobehaviour and its associations with brain MRI in infants born preterm
    Eeles, AL ; Walsh, JM ; Olsen, JE ; Cuzzilla, R ; Thompson, DK ; Anderson, PJ ; Doyle, LW ; Cheong, JLY ; Spittle, AJ (BMJ PUBLISHING GROUP, 2017-10)
    BACKGROUND: Infants born very preterm (VPT) and moderate-to-late preterm (MLPT) are at increased risk of long-term neurodevelopmental deficits, but how these deficits relate to early neurobehaviour in MLPT children is unclear. The aims of this study were to compare the neurobehavioural performance of infants born across three different gestational age groups: preterm <30 weeks' gestational age (PT<30); MLPT (32-36 weeks' gestational age) and term age (≥37 weeks' gestational age), and explore the relationships between MRI brain abnormalities and neurobehaviour at term-equivalent age. METHODS: Neurobehaviour was assessed at term-equivalent age in 149 PT<30, 200 MLPT and 200 term-born infants using the Neonatal Intensive Care UnitNetwork Neurobehavioral Scale (NNNS), the Hammersmith Neonatal Neurological Examination (HNNE) and Prechtl's Qualitative Assessment of General Movements (GMA). A subset of 110 PT<30 and 198 MLPT infants had concurrent brain MRI. RESULTS: Proportions with abnormal neurobehaviour on the NNNS and the HNNE, and abnormal GMA all increased with decreasing gestational age. Higher brain MRI abnormality scores in some regions were associated with suboptimal neurobehaviour on the NNNS and HNNE. The relationships between brain MRI abnormality scores and suboptimal neurobehaviour were similar in both PT<30 and MLPT infants. The relationship between brain MRI abnormality scores and abnormal GMA was stronger in PT<30 infants. CONCLUSIONS: There was a continuum of neurobehaviour across gestational ages. The relationships between brain abnormality scores and suboptimal neurobehaviour provide evidence that neurobehavioural assessments offer insight into the integrity of the developing brain, and may be useful in earlier identification of the highest-risk infants.
  • Item
    Thumbnail Image
    Physiological stress responses in infants at 29-32 weeks' postmenstrual age during clustered nursing cares and standardised neurobehavioural assessments
    Allinson, LG ; Denehy, L ; Doyle, LW ; Eeles, AL ; Dawson, JA ; Lee, KJ ; Spittle, AJ (BMJ PUBLISHING GROUP, 2017-11)
    OBJECTIVE: To compare the physiological stress responses of infants born <30 weeks' gestational age when undergoing clustered nursing cares with standardised neurobehavioural assessments in neonatal nurseries. DESIGN/METHODS: Thirty-four infants born <30 weeks' gestation were recruited from a tertiary neonatal intensive care unit. Heart rate (HR) and oxygen saturation were recorded during clustered nursing cares and during standardised neurobehavioural assessments (including the General Movements Assessment, Hammersmith Neonatal Neurological Examination and Premie-Neuro Assessment). Two assessors extracted HR and oxygen saturations at 5 s intervals, with HR instability defined either as tachycardia (HR >180 beats per minute (bpm)) or bradycardia (HR <100 bpm). Oxygen desaturations were defined as SpO2<90%. Physiological stability was compared between nursing cares and neurobehavioural assessments using linear (for continuous outcomes) and logistic (HR instability and oxygen desaturation) regression. RESULTS: Compared with clustered nursing cares HR was lower (mean difference -5.9 bpm; 95% CI -6.5 to 5.3; P<0.001) and oxygen saturation higher (mean difference 2.4%; 95% CI 2.1% to 2.6%; P<0.001) during standardised neurobehavioural assessments. Compared with clustered nursing cares neurobehavioural assessments were also associated with reduced odds of tachycardia (OR 0.44, 95% CI 0.22 to 0.86), HR instability (OR 0.43, 95% CI 0.22 to 0.85) and oxygen desaturation (OR 0.43, 95% CI 0.26 to 0.70). CONCLUSIONS: Standardised neurobehavioural assessments are associated with less physiological stress than clustered nursing cares in infants aged 29-32 weeks' postmenstrual age, and are therefore possible without causing undue physiological disturbance in medically stable infants.