Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Coordination of deep hip muscle activity is altered in symptomatic femoroacetabular impingement
    Diamond, LE ; Van den Hoorn, W ; Bennell, KL ; Wrigley, TV ; Hinman, RS ; O'Donnell, J ; Hodges, PW (WILEY, 2017-07)
  • Item
    No Preview Available
    Effect of exercise on knee joint contact forces in people following medial partial meniscectomy: A secondary analysis of a randomised controlled trial
    Starkey, SC ; Lenton, GK ; Saxby, DJ ; Hinman, RS ; Bennell, KL ; Wrigley, T ; Lloyd, D ; Hall, M (ELSEVIER IRELAND LTD, 2020-06)
    BACKGROUND: Arthroscopic partial meniscectomy may cause knee osteoarthritis, which may be related to altered joint loading. Previous research has failed to demonstrate that exercise can reduce medial compartment knee loads following meniscectomy but has not considered muscular loading in their estimates. RESEARCH QUESTION: What is the effect of exercise compared to no intervention on peak medial tibiofemoral joint contact force during walking using an electromyogram-driven neuromusculoskeletal model, following medial arthroscopic partial meniscectomy? METHODS: This is a secondary analysis of a randomized controlled trial (RCT). 41 participants aged between 30-50 years with medial arthroscopic partial meniscectomy within the past 3-12 months, were randomly allocated to either a 12-week, home-based, physiotherapist-guided exercise program or to no exercise (control group). Three-dimensional lower-body motion, ground reaction forces, and surface electromyograms from eight lower-limb muscles were acquired during self-selected normal- and fast-paced walking at baseline and follow-up. An electromyogram-driven neuromusculoskeletal model estimated medial compartment contact forces (body weight). Linear regression models evaluated between-group differences (mean difference (95% CI)). RESULTS: There were no significant between-group differences in the change (follow-up minus baseline) in first peak medial contact force during self-selected normal- or fast-paced walking (0.07 (-0.08 to 0.23), P = 0.34 and 0.01 (-0.19 to 0.22), P = 0.89 respectively). No significant between-group difference was found for change in second peak medial contact force during normal- or fast-paced walking (0.09 (-0.09 to 0.28), P = 0.31 and 0.02 (-0.17 to 0.22), P = 0.81 respectively). At the individual level, variability was observed for changes in first (range -26.2% to +31.7%) and second (range -46.5% to +59.9%) peak tibiofemoral contact force. SIGNIFICANCE: This is the first study to apply electromyogram-driven neuromusculoskeletal modelling to an exercise intervention in a RCT. While our results suggest that a 12-week exercise program does not alter peak medial knee loads after meniscectomy, within-participant variability suggests individual-specific muscle activation patterns that warrant further investigation.
  • Item
    Thumbnail Image
    Footwear for osteoarthritis of the lateral knee: protocol for the FOLK randomised controlled trial
    Paterson, KL ; Bennell, KL ; Metcalf, BR ; Campbell, PK ; Kasza, J ; Wrigley, TV ; Hinman, RS (BMC, 2020-04-15)
    BACKGROUND: Structural features of lateral tibiofemoral (TF) joint osteoarthritis (OA) occur in up to half of all people with knee OA, and co-existing lateral TF OA is associated with worse knee pain in people with mixed compartmental knee OA. Clinical guidelines for management of knee OA advocate advice about appropriate footwear, yet there is no research evaluating which types of footwear are best for managing pain associated with lateral TF OA. Biomechanical evidence suggests that "motion-control" footwear, which possess midsoles that are stiffer medially compared to laterally, may shift load away from the lateral compartment of the knee and thus may reduce knee pain associated with lateral TF OA. The primary aim of this study is to compare the effects of motion-control shoes to neutral shoes on knee pain in people with predominantly lateral TF OA. METHODS: This will be an assessor- and participant-blinded, two-arm, comparative effectiveness randomized controlled trial (RCT) conducted in Melbourne, Australia. We will recruit a minimum of 92 people with painful lateral TF OA from the community. Participants will be randomly allocated to receive either motion-control shoes or neutral shoes and will be instructed to wear their allocated shoes for a minimum of 6 h per day for 6 months. The primary outcome is change in self-reported knee pain on walking, measured using a numerical rating scale, assessed at baseline and 6 months. Secondary outcomes include other measures of knee pain, physical function, quality of life, participant-perceived change in pain and function, and physical activity levels. DISCUSSION: This study will compare the efficacy of motion-control shoes to neutral shoes for people with painful lateral TF OA. Findings will be the first to provide evidence of the effects of footwear on knee pain in this important subgroup of people with knee OA and allow clinicians to provide accurate advice about the most appropriate footwear for managing pain associated with lateral TF OA. TRIAL REGISTRATION: This trial has been prospectively registered by the Australian New Zealand Clinical Trials Registry on 15/11/2018 (reference: ACTRN12618001864213).
  • Item
    Thumbnail Image
    Comparison of weight bearing functional exercise and non-weight bearing quadriceps strengthening exercise on pain and function for people with knee osteoarthritis and obesity: protocol for the TARGET randomised controlled trial
    Bennell, KL ; Nelligan, RK ; Kimp, AJ ; Wrigley, TV ; Metcalf, B ; Kasza, J ; Hodges, PW ; Hinman, RS (BMC, 2019-06-18)
    BACKGROUND: Clinical guidelines recommend exercise as a core treatment for individuals with knee osteoarthritis (OA). However, the best type of exercise for clinical benefits is not clear, particularly in different OA subgroups. Obesity is a common co-morbidity in people with knee OA. There is some evidence suggesting that non-weight bearing exercise may be more effective than weight bearing exercise in patients with medial knee OA and obesity. METHODS: To compare the efficacy of two different exercise programs (weight bearing functional exercise and non-weight bearing quadriceps strengthening) on pain and physical function for people ≥50 years with painful medial knee OA and obesity (body mass index ≥30 kg/m2) 128 people in Melbourne, Australia will be recruited for a two group parallel-design, assessor- and participant-blinded randomised controlled trial. Participants will be randomly allocated to undertake a program of either weight bearing functional exercise or non-weight bearing quadriceps strengthening exercise. Both groups will attend five individual sessions with a physiotherapist who will teach, monitor and progress the exercise program. Participants will be asked to perform the exercises at home four times per week for 12 weeks. Outcomes will be measured at baseline and 12 weeks. Primary outcomes are self-reported knee pain and physical function. Secondary outcomes include other measures of knee pain, physical function, quality-of-life, participant-perceived global change, physical performance, and lower limb muscle strength. DISCUSSION: This study will compare the efficacy of two different 12-week physiotherapist-prescribed, home-based exercise programs for people with medial knee OA and obesity. Findings will provide valuable information to help inform exercise prescription in this common OA patient subgroup. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry reference: ACTRN12617001013358 , 14/7/2017.
  • Item
    Thumbnail Image
    Footwear for self-managing knee osteoarthritis symptoms: protocol for the Footstep randomised controlled trial
    Paterson, KL ; Bennell, KL ; Wrigley, TV ; Metcalf, BR ; Campbell, PK ; Kazsa, J ; Hinman, RS (BMC, 2018-07-18)
    BACKGROUND: Knee osteoarthritis (OA) is a leading cause of musculoskeletal pain and disability globally, and abnormal knee loading is central to disease pathogenesis. Clinical guidelines recommend clinicians provide advice regarding appropriate footwear for people with knee OA, yet there is little research comparing the effects of different footwear on knee OA symptoms. Research suggests that wearing flat flexible shoes is associated with lower knee joint loads compared to stable supportive shoe styles. This two-arm pragmatic, comparative effectiveness randomised controlled trial will compare the effects of daily use of flat flexible shoes and stable supportive shoes on knee OA clinical outcomes, over 6 months. METHODS: 164 people with symptomatic medial tibiofemoral OA of moderate to severe radiographic severity (Kellgren and Lawrence Grade 3 & 4) will be recruited from the community. Following baseline assessment, participants will be randomly allocated to receive either i) flat flexible shoes or; ii) stable supportive shoes. Participants will choose two different pairs of shoes from a selection that fulfil the criteria in their allocated shoe class. Limited disclosure will blind participants to group allocation. Participants will be instructed to wear their allocated shoes daily for 6 months (minimum of 6 h/day), after which participants will be reassessed. The primary outcomes are knee pain severity on walking (measured by numerical rating scale) and self-reported physical function (measured by the Western Ontario and McMaster Universities Osteoarthritis Index), assessed at baseline and 6 months. Secondary outcomes include additional measures of knee pain, function, sport and recreation participation and quality-of-life (measured using subscales of the Knee Osteoarthritis Outcome Score), as well as pain at other sites (measured by numerical rating scale), self-reported global ratings of change in pain and physical function (measured by 7-point rating scale), and physical activity levels (measured by Physical Activity Scale for the Elderly). DISCUSSION: This study will determine whether daily wear of flat flexible shoes improves clinical outcomes in the management of knee OA, compared to stable supportive shoes. Findings will assist clinicians in providing evidence-based advice regarding appropriate footwear for people with knee OA to self-manage symptoms. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry reference: ACTRN12617001098325 . Registered 28/07/2017.
  • Item
    Thumbnail Image
    Plug-in-Gait calculation of the knee adduction moment in people with knee osteoarthritis during shod walking: comparison of two different foot marker models
    Paterson, KL ; Hinman, RS ; Metcalf, BR ; Bennell, KL ; Wrigley, TV (BMC, 2017-02-04)
    BACKGROUND: Understanding how kinematic multi-segment foot modelling influences the utility of Plug-in-Gait calculations of the knee adduction moment (KAM) during shod walking is relevant to knee osteoarthritis (OA). Multi-segment foot markers placed on the skin through windows cut in to the shoe provide a more accurate representation of foot mechanics than the traditional marker set used by Plug-in-Gait, which uses fewer markers, placed on the shoe itself. We aimed to investigate whether Plug-in-Gait calculation of the KAM differed when using a kinematic multi-segment foot model compared to the traditional Plug-in-Gait marker set. METHODS: Twenty people with medial knee OA underwent gait analysis in two test conditions: i) Plug-in-Gait model with its two standard foot markers placed on the shoes and; ii) Plug-in-Gait with the heel marker virtualised from a modified-Oxford Foot Model where 8 ft markers were placed on the skin through windows cut in shoe uppers. Outcomes were the peak KAM, KAM impulse and other knee kinetic and kinematic variables. RESULTS: There were no differences (P > 0.05) in any gait variables between conditions. Excellent agreement was found for all outcome variables, with high correlations (r > 0.88-0.99, P < 0.001), narrow limits of agreement and no proportional bias (R2 = 0.03-0.14, P > 0.05). The mean difference and 95% confidence intervals for peak KAM were also within the minimal detectable change range demonstrating equivalence. CONCLUSIONS: Plug-in-Gait calculations of the KAM are not altered when using a kinematic multi-segment foot marker model with skin markers placed through windows cut in to the shoe, instead of the traditional marker set placed on top of shoes. Researchers may be confident that applying either foot model does not change the calculation of the KAM using Plug-in-Gait.
  • Item
    Thumbnail Image
    Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status?
    Hall, M ; Hinman, RS ; van der Esch, M ; van der Leeden, M ; Kasza, J ; Wrigley, TV ; Metcalf, BR ; Dobson, F ; Bennell, KL (BIOMED CENTRAL LTD, 2017-12-08)
    BACKGROUND: Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. METHODS: Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. RESULTS: In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. CONCLUSIONS: In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. TRIAL REGISTRATION: ANZCTR 12610000660088 . Registered 12 August 2010.