Physiotherapy - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Tibiofemoral joint structural change from 2.5 to 4.5years following ACL reconstruction with and without combined meniscal pathology
    Wang, X ; Bennell, KL ; Wang, Y ; Wrigley, TV ; Van Ginckel, A ; Fortin, K ; Saxby, DJ ; Cicuttini, FM ; Lloyd, DG ; Vertullo, CJ ; Feller, JA ; Whitehead, T ; Gallie, P ; Bryant, AL (BMC, 2019-07-04)
    BACKGROUND: People who have had anterior cruciate ligament reconstruction (ACLR) are at a high risk of developing tibiofemoral joint (TFJ) osteoarthritis (OA), with concomitant meniscal injury elevating this risk. This study aimed to investigate OA-related morphological change over 2 years in the TFJ among individuals who have undergone ACLR with or without concomitant meniscal pathology and in healthy controls. A secondary aim was to examine associations of baseline TFJ cartilage defects and bone marrow lesions (BML) scores with tibial cartilage volume change in ACLR groups. METHODS: Fifty seven ACLR participants aged 18-40 years (32 isolated ACLR, 25 combined meniscal pathology) underwent knee magnetic resonance imaging (MRI) 2.5 and 4.5 years post-surgery. Nine healthy controls underwent knee MRI at the ~ 2-year intervals. Tibial cartilage volume, TFJ cartilage defects and BMLs were assessed from MRI. RESULTS: For both ACLR groups, medial and lateral tibial cartilage volume increased over 2 years (P <  0.05). Isolated ACLR group had greater annual percentage increase in lateral tibial cartilage volume compared with controls and with the combined group (P = 0.03). Cartilage defects remained unchanged across groups. Both ACLR groups showed more lateral tibia BML regression compared with controls (P = 0.04). Baseline cartilage defects score was positively associated with cartilage volume increase at lateral tibia (P = 0.002) while baseline BMLs score was inversely related to medial tibia cartilage volume increase (P = 0.001) in the pooled ACLR group. CONCLUSIONS: Tibial cartilage hypertrophy was apparent in ACLR knees from 2.5 to 4.5 years post-surgery and was partly dependent upon meniscal status together with the nature and location of the underlying pathology at baseline. Magnitude and direction of change in joint pathologies (i.e., cartilage defects, BMLs) were less predictable and either remained stable or improved over follow-up.
  • Item
    Thumbnail Image
    Differences and mechanisms underpinning a change in the knee flexion moment while running in stability and neutral footwear among young females
    Sayer, TA ; Hinman, RS ; Paterson, KL ; Bennell, KL ; Fortin, K ; Kasza, J ; Bryant, AL (BMC, 2019-01-08)
    BACKGROUND: Higher peak external knee flexion moments (KFM) during running has been observed in healthy people wearing athletic footwear compared to barefoot, which may increase risk of knee pathologies such as patellofemoral pain. Currently, no studies have examined whether stability and neutral style athletic shoes influence the peak KFM differently, or explored the underlying biomechanical mechanisms by which footwear alters peak KFM in young females. METHODS: Lower limb biomechanics of sixty girls aged between 10 and 25 years old were collected while running in footwear (both stability and neutral) and barefoot. The external peak KFM, sagittal plane kinematics, sagittal plane knee ground reaction force (GRF) lever arm and sagittal plane resultant GRF magnitude were analysed by repeated measures Analysis of Variance. Linear mixed models were fit to identify predictors of a change in peak KFM, and to determine if the effects of these predictors differed between footwear conditions. RESULTS: The peak KFM was higher wearing both shoe styles compared to barefoot (p < 0.001), while no between-shoe differences were found (p > 0.05). Both shoes also increased kinematic variables at the hip, knee, and ankle (p < 0.05). When all these variables were entered into the mixed model, only a change in the knee-GRF lever arm was predictive of a change in peak KFM wearing shoes compared to barefoot (p < 0.001). CONCLUSION: These findings provide evidence that stability and neutral shoes increase peak KFM compared to barefoot, which is associated with a change in the knee-GRF lever arm rather than a change in lower limb kinematics. Future studies may consider manipulating footwear characteristics to reduce the knee-GRF lever arm in an effort to reduce peak KFM and the potential risk of patellofemoral pain.