Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Non-Invasive Measurement of Intracranial Pressure Through Application of Venous Ophthalmodynamometry.
    Lo, L ; Zhao, D ; Ayton, L ; Grayden, D ; Bui, B ; Morokoff, A ; John, S (IEEE, 2021-11)
    Non-invasive intracranial pressure (ICP) monitoring is possible using venous ophthalmodynamometry to observe a pulsation in retinal blood vessels when intraocular pressure (IOP) exceeds ICP. Here, we identify features in the eye - optic disc and retinal blood vessel locations - and identify pulsation in large retinal blood vessels. The relationship between force and the magnitude of pulsation is used to estimate ICP when force is applied to the eye to gradually increase IOP over time. This approach yields 77% accuracy in automatically observing vessel pulsation.Clinical Relevance - Non-invasive ICP monitoring is desirable to improve patient outcome by reducing potential trauma and complications associated with invasive assessment with intracranial sensors or lumbar puncture.
  • Item
    No Preview Available
    Enhancing student learning through trans-disciplinary project-based assessment in bioengineering
    Lam, L ; Cochrane, T ; Rajagopal, V ; Davey, K ; John, S (Auckland University of Technology (AUT) Library, 2021)
    Pecha Kucha presentation for the SoTEL 2021 Symposium from the Bionic Limb project team at the University of Melbourne. https://sotel.nz
  • Item
    Thumbnail Image
    Preliminary Minimum Reporting Requirements for In-Vivo Neural Interface Research: I. Implantable Neural Interfaces
    Eiber, C ; Delbeke, J ; Cardoso, J ; de Neeling, M ; John, S ; Lee, CW ; Skefos, J ; Sun, A ; Prodanov, D ; McKinney, Z (Institute of Electrical and Electronics Engineers (IEEE), 2021)
    The pace of research and development in neuroscience, neurotechnology, and neurorehabilitation is rapidly accelerating, with the number of publications doubling every 4.2 years. Maintaining this progress requires technological standards and scientific reporting guidelines to provide frameworks for communication and interoperability. The present lack of such standards for neurotechnologies limits the transparency, reproducibility, and meta-analysis of this growing body of research, posing an ongoing barrier to research, clinical, and commercial objectives. Continued neurotechnological innovation requires the development of some minimal standards to promote integration between this broad spectrum of technologies and therapies. To preserve design freedom and accelerate the translation of research into safe and effective technologies with maximal user benefit, such standards must be collaboratively co-developed by a full spectrum of neuroscience and neurotechnology stakeholders. This paper summarizes the preliminary recommendations of IEEE Working Group P2794, developing a Reporting Standard for in-vivo Neural Interface Research (RSNIR). Index Terms— Neurotechnology, reproducibility, scientific reporting, standardization, bioelectronic medicine Impact Statement— This work provides a preliminary set of reporting guidelines for implantable neural interface research, developed by IEEE WG P2794 in open collaboration between a range of stakeholders to accelerate the research, development, and integration of innovative neurotechnologies.
  • Item
    Thumbnail Image
    Preliminary Minimum Reporting Requirements for Reporting In-Vivo Neural Interface Research: I. Implantable Neural Interfaces
    Eiber, CD ; Delbeke, J ; Cardoso, J ; de Neeling, M ; John, SE ; Lee, CW ; Skefos, J ; Sun, A ; Prodanov, D ; McKinney, Z (Cold Spring Harbor Laboratory, 2021)
    The pace of research and development in neuroscience, neurotechnology, and neurorehabilitation is rapidly accelerating, with the number of publications doubling every 4.2 years. Maintaining this progress requires technological standards and scientific reporting guidelines to provide frameworks for communication and interoperability. The present lack of such standards for neurotechnologies limits the transparency, reproducibility, and meta-analysis of this growing body of research, posing an ongoing barrier to research, clinical, and commercial objectives. Continued neurotechnological innovation requires the development of some minimal standards to promote integration between this broad spectrum of technologies and therapies. To preserve design freedom and accelerate the translation of research into safe and effective technologies with maximal user benefit, such standards must be collaboratively co-developed by a full spectrum of neuroscience and neurotechnology stakeholders. This paper summarizes the preliminary recommendations of IEEE Working Group P2794, developing a Reporting Standard for in-vivo Neural Interface Research (RSNIR). Index Terms— Neurotechnology, reproducibility, scientific reporting, standardization, bioelectronic medicine Impact Statement— This work provides a preliminary set of reporting guidelines for implantable neural interface research, developed by IEEE WG P2794 in open collaboration between a range of stakeholders to accelerate the research, development, and integration of innovative neurotechnologies.
  • Item
    Thumbnail Image
    Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience
    Oxley, TJ ; Yoo, PE ; Rind, GS ; Ronayne, SM ; Lee, CMS ; Bird, C ; Hampshire, V ; Sharma, RP ; Morokoff, A ; Williams, DL ; MacIsaac, C ; Howard, ME ; Irving, L ; Vrljic, I ; Williams, C ; John, SE ; Weissenborn, F ; Dazenko, M ; Balabanski, AH ; Friedenberg, D ; Burkitt, AN ; Wong, YT ; Drummond, KJ ; Desmond, P ; Weber, D ; Denison, T ; Hochberg, LR ; Mathers, S ; O'Brien, TJ ; May, CN ; Mocco, J ; Grayden, DB ; Campbell, BC ; Mitchell, P ; Opie, NL (BMJ PUBLISHING GROUP, 2021-02)
    BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.