Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The Effects of Cathodal Transcranial Direct Current Stimulation in a Patient with Drug-Resistant Temporal Lobe Epilepsy (Case Study)
    Zoghi, M ; O'Brien, TJ ; Kwan, P ; Cook, MJ ; Galea, M ; Jaberzadeh, S (ELSEVIER SCIENCE INC, 2016)
  • Item
    Thumbnail Image
    Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg
    Kennard, JTT ; Barmanray, R ; Sampurno, S ; Ozturk, E ; Reid, CA ; Paradiso, L ; D'Abaco, GM ; Kaye, AH ; Foote, SJ ; O'Brien, TJ ; Powell, KL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2011-04)
    Absence-like seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model are believed to arise in hyperexcitable somatosensory cortical neurons, however the cellular basis of this increased excitability remains unknown. We have previously shown that expression of the Transmembrane AMPA receptor Regulatory Protein (TARP), stargazin, is elevated in the somatosensory cortex of GAERS. TARPs are critical regulators of the trafficking and function of AMPA receptors. Here we examine the developmental expression of stargazin and the impact this may have on AMPA receptor trafficking in the GAERS model. We show that elevated stargazin in GAERS is associated with an increase in AMPA receptor proteins, GluA1 and GluA2 in the somatosensory cortex plasma membrane of adult epileptic GAERS. Elevated stargazin expression is not seen in the epileptic WAG/Rij rat, which is a genetically distinct but phenotypically similar rat model also manifesting absence seizures, indicating that the changes seen in GAERS are unlikely to be a secondary consequence of the seizures. In juvenile (6 week old) GAERS, at the age when seizures are just starting to be expressed, there is elevated stargazin mRNA, but not protein expression for stargazin or the AMPA receptor subunits. In neonatal (7 day old) pre-epileptic GAERS there was no alteration in stargazin mRNA expression in any brain region examined. These data demonstrate that stargazin and AMPA receptor membrane targeting is altered in GAERS, potentially contributing to hyperexcitability in somatosensory cortex, with a developmental time course that would suggest a pathophysiological role in the epilepsy phenotype.
  • Item
    No Preview Available
    Feasibility of a Chronic, Minimally Invasive Endovascular Neural Interface
    Opie, NL ; Rind, GS ; John, SE ; Ronayne, SM ; Grayden, DB ; Burkitt, AN ; May, CN ; O'Brien, TJ ; Oxley, TJ ; Patton, J ; Barbieri, R ; Ji, J ; Jabbari, E ; Dokos, S ; Mukkamala, R ; Guiraud, D ; Jovanov, E ; Dhaher, Y ; Panescu, D ; Vangils, M ; Wheeler, B ; Dhawan, AP (IEEE, 2016)
    Development of a neural interface that can be implanted without risky, open brain surgery will increase the safety and viability of chronic neural recording arrays. We have developed a minimally invasive surgical procedure and an endovascular electrode-array that can be delivered to overlie the cortex through blood vessels. Here, we describe feasibility of the endovascular interface through electrode viability, recording potential and safety. Electrochemical impedance spectroscopy demonstrated that electrode impedance was stable over 91 days and low frequency phase could be used to infer electrode incorporation into the vessel wall. Baseline neural recording were used to identify the maximum bandwidth of the neural interface, which remained stable around 193 Hz for six months. Cross-sectional areas of the implanted vessels were non-destructively measured using the Australian Synchrotron. There was no case of occlusion observed in any of the implanted animals. This work demonstrates the feasibility of an endovascular neural interface to safely and efficaciously record neural information over a chronic time course.
  • Item
    No Preview Available
    IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas
    Liubinas, SV ; D'Abaco, GM ; Moffat, BM ; Gonzales, M ; Feleppa, F ; Nowell, CJ ; Gorelik, A ; Drummond, KJ ; O'Brien, TJ ; Kaye, AH ; Morokoff, AP (WILEY, 2014-09)
    OBJECTIVE: The isocitrate dehydrogenase 1 (IDH1) R132H mutation is the most common mutation in World Health Organization (WHO) grade II gliomas, reported to be expressed in 70-80%, but only 5-10% of high grade gliomas. Low grade tumors, especially the protoplasmic subtype, have the highest incidence of tumor associated epilepsy (TAE). The IDH1 mutation leads to the accumulation of 2-hydroxyglutarate (2HG), a metabolite that bears a close structural similarity to glutamate, an excitatory neurotransmitter that has been implicated in the pathogenesis of TAE. We hypothesized that expression of mutated IDH1 may play a role in the pathogenesis of TAE in low grade gliomas. METHODS: Thirty consecutive patients with WHO grade II gliomas were analyzed for the presence of the IDH1-R132H mutation using immunohistochemistry. The expression of IDH1 mutation was semiquantified using open-source biologic-imaging analysis software. RESULTS: The percentage of cells positive for the IDH1-R132H mutation was found to be higher in patients with TAE compared to those without TAE (median and interquartile range (IQR) 25.3% [8.6-53.5] vs. 5.2% [0.6-13.4], p = 0.03). In addition, we found a significantly higher median IDH1 mutation expression level in the protoplasmic subtype of low grade glioma (52.2% [IQR 19.9-58.6] vs. 13.8% [IQR 3.9-29.4], p = 0.04). SIGNIFICANCE: Increased expression of the IDH1-R132H mutation is associated with seizures in low grade gliomas and also with the protoplasmic subtype. This supports the hypothesis that this mutation may play a role in the pathogenesis of both TAE and low grade gliomas.