Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 420
  • Item
    No Preview Available
    Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease (Adv. Funct. Mater. 47/2021)
    Hunt, CPJ ; Penna, V ; Gantner, CW ; Moriarty, N ; Wang, Y ; Franks, S ; Ermine, CM ; de Luzy, IR ; Pavan, C ; Long, BM ; Williams, RJ ; Thompson, LH ; Nisbet, DR ; Parish, CL (Wiley, 2021-11)
  • Item
    Thumbnail Image
    Remote Control in Formation of 3D Multicellular Assemblies Using Magnetic Forces
    Jafari, J ; Han, X-L ; Palmer, J ; Tran, PA ; O'Connor, AJ (AMER CHEMICAL SOC, 2019-05)
    Cell constructs have been utilized as building blocks in tissue engineering to closely mimic the natural tissue and also overcome some of the limitations caused by two-dimensional cultures or using scaffolds. External forces can be used to enhance the cells' adhesion and interaction and thus provide better control over production of these structures compared to methods like cell seeding and migration. In this paper, we demonstrate an efficient method to generate uniform, three-dimensional cell constructs using magnetic forces. This method produced spheroids with higher densities and more symmetrical structures than the commonly used centrifugation method for production of cell spheroids. It was also shown that shape of the cell constructs could be changed readily by using different patterns of magnetic field. The application of magnetic fields to impart forces on the cells enhanced the fusion of these spheroids, which could be used to produce larger and more complicated structures for future tissue engineering applications.
  • Item
    Thumbnail Image
    Engineering highly effective antimicrobial selenium nanoparticles through control of particle size
    Huang, T ; Holden, JA ; Heath, DE ; O'Brien-Simpson, NM ; O'Connor, AJ (Royal Society of Chemistry, 2019-08-21)
    The overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently. One promising candidate to address this requirement is selenium nanoparticles (Se NPs), which are made from the essential dietary trace element Se and have antimicrobial activity against Gram-positive bacteria. The size of nanomaterials can strongly affect their biophysical properties and functions; however, the effects of the size of Se NPs on their antibacterial efficacy has not been systematically investigated. Therefore, in this work, spherical Se NPs ranging from 43 to 205 nm in diameter were fabricated, and their mammalian cytotoxicity and antibacterial activity as a function of their size were systematically studied. The antibacterial activity of the Se NPs was shown to be strongly size dependent, with 81 nm Se NPs showing the maximal growth inhibition and killing effect of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). The Se NPs were shown to have multi-modal mechanisms of action that depended on their size, including depleting internal ATP, inducing ROS production, and disrupting membrane potential. All the Se NPs were non-toxic towards mammalian cells up to 25 μg mL−1. Furthermore, the MIC value for the 81 nm particles produced in this research is 16 ± 7 μg mL−1, significantly lower than previously reported MIC values for Se NPs. This data illustrates that Se NP size is a facile yet critical and previously underappreciated parameter that can be tailored for maximal antimicrobial efficacy. We have identified that using Se NPs with a size of 81 nm and concentration of 10 μg mL−1 shows promise as a safe and efficient way to kill S. aureus without damaging mammalian cells.
  • Item
    No Preview Available
    Development of Macroporous Chitosan Scaffolds for Eyelid Tarsus Tissue Engineering
    Sun, MT ; O’Connor, AJ ; Milne, I ; Biswas, D ; Casson, R ; Wood, J ; Selva, D (Springer Science and Business Media LLC, 2019-12-01)
    Background: Reconstruction of large eyelid defects remains challenging due to the lack of suitable eyelid tarsus tissue substitutes. We aimed to evaluate a novel bioengineered chitosan scaffold for use as an eyelid tarsus substitute. Methods: Three-dimensional macroporous chitosan hydrogel scaffold were produced via cryogelation with specific biomechanical properties designed to directly match characteristics of native eyelid tarsus tissue. Scaffolds were characterized by confocal microscopy and tensile mechanical testing. To optimise biocompatibility, human eyelid skin fibroblasts were cultured from biopsy-sized samples of fresh eyelid skin. Immunological and gene expression analysis including specific fibroblast-specific markers were used to determine the rate of fibroblast de-differentiation in vitro and characterize cells cultured. Eyelid skin fibroblasts were then cultured over the chitosan scaffolds and the resultant adhesion and growth of cells were characterized using immunocytochemical staining. Results: The chitosan scaffolds were shown to support the attachment and proliferation of NIH 3T3 mouse fibroblasts and human orbital skin fibroblasts in vitro. Our novel bioengineered chitosan scaffold has demonstrated biomechanical compatibility and has the ability to support human eyelid skin fibroblast growth and proliferation. Conclusions: This bioengineered tissue has the potential to be used as a tarsus substitute during eyelid reconstruction, offering the opportunity to pre-seed the patient’s own cells and represents a truly personalised approach to tissue engineering.
  • Item
    Thumbnail Image
    Antimicrobial nanoparticle coatings for medical implants: Design challenges and prospects
    Li, X ; Huang, T ; Heath, DE ; O'Brien-Simpson, NM ; O'Connor, AJ (AMER INST PHYSICS, 2020-11)
    Microbial colonization, infection, and biofilm formation are major complications in the use of implants and are the predominant risk factors in implant failure. Although aseptic surgery and the administration of antimicrobial drugs may reduce the risk of infection, the systemic use of antibiotics can lead to a lack of efficacy, an increase in the risk of tissue toxicity, and the development of drug-resistant infections. To reduce implant-related infections, antimicrobial materials are increasingly being investigated and applied to implant surfaces using various methods depending on the agents and their microbicidal mechanisms. Through the development of biomaterials and nanotechnology, antimicrobial nanoparticles are becoming promising candidates for implant coatings, as their multifactorial antimicrobial mechanisms combat microbial adherence, viability, and biofilm formation. Despite their antimicrobial promise, the application of nanoparticles onto implant surfaces while retaining their antimicrobial potency faces many challenges. Herein, we review the potential and challenges associated with the design and implementation of antimicrobial nanoparticle coatings for the medical implant industry, particularly focusing on manufacturing considerations, sterilization, long-term stability, protein fouling, regulation, and safety, with a view to providing researchers the necessary tools to aid the translation of materials from the bench to the clinic.
  • Item
    Thumbnail Image
    Multifunctional Antimicrobial Polypeptide-Selenium Nanoparticles Combat Drug-Resistant Bacteria
    Huang, T ; Holden, JA ; Reynolds, EC ; Heath, DE ; O'Brien-Simpson, NM ; O'Connor, AJ (AMER CHEMICAL SOC, 2020-12-16)
    Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance. In this work, selenium nanoparticles coated with the antimicrobial polypeptide, ε-poly-l-lysine, (Se NP-ε-PL) were synthesized and their antibacterial activity and cytotoxicity were investigated. Se NP-ε-PL exhibited significantly greater antibacterial activity against all eight bacterial species tested, including Gram-positive, Gram-negative, and drug-resistant strains, than their individual components, Se NP and ε-PL. The nanoparticles showed no toxicity toward human dermal fibroblasts at the minimum inhibitory concentrations, demonstrating a therapeutic window. Furthermore, unlike the conventional antibiotic kanamycin, Se NP-ε-PL did not readily induce resistance in E. coli or S. aureus. Specifically, S. aureus began to develop resistance to kanamycin from ∼44 generations, whereas it took ∼132 generations for resistance to develop to Se NP-ε-PL. Startlingly, E. coli was not able to develop resistance to the nanoparticles over ∼300 generations. These results indicate that the multifunctional approach of combining Se NP with ε-PL to form Se NP-ε-PL is a highly efficacious new strategy with wide-spectrum antibacterial activity, low cytotoxicity, and significant delays in development of resistance.
  • Item
    Thumbnail Image
    The Challenge of Cartilage Integration: Understanding a Major Barrier to Chondral Repair
    Trengove, A ; Di Bella, C ; O'Connor, AJ (MARY ANN LIEBERT, INC, 2022-02-01)
    Articular cartilage defects caused by injury frequently lead to osteoarthritis, a painful and costly disease. Despite widely used surgical methods to treat articular cartilage defects and a plethora of research into regenerative strategies as treatments, long-term clinical outcomes are not satisfactory. Failure to integrate repair tissue with native cartilage is a recurring issue in surgical and tissue-engineered strategies, seeing eventual degradation of the regenerated or surrounding tissue. This review delves into the current understanding of why continuous and robust integration with native cartilage is so difficult to achieve. Both the intrinsic limitations of chondrocytes to remodel injured cartilage, and the significant challenges posed by a compromised biomechanical environment are described. Recent scaffold and cell-based techniques to repair cartilage are also discussed, and limitations of existing methods to evaluate integrative repair. In particular, the importance of evaluating the mechanical integrity of the interface between native and repair tissue is highlighted as a meaningful assessment of any strategy to repair this load-bearing tissue. Impact statement The failure to integrate grafts or biomaterials with native cartilage is a major barrier to cartilage repair. An in-depth understanding of the reasons cartilage integration remains a challenge is required to inform cartilage repair strategies. In particular, this review highlights that integration of cartilage repair strategies is frequently assessed in terms of the continuity of tissue, but not the mechanical integrity. Given the load-bearing nature of cartilage, evaluating integration in terms of interfacial strength is essential to assessing the potential success of cartilage repair methods.
  • Item
    Thumbnail Image
    Superior Hemostatic and Wound-Healing Properties of Gel and Sponge Forms of Nonoxidized Cellulose Nanofibers: In Vitro and In Vivo Studies
    Mohamed, E ; Wang, Y ; Crispin, PJ ; Fitzgerald, A ; Dahlstrom, JE ; Fowler, S ; Nisbet, DR ; Tsuzuki, T ; Coupland, LA (WILEY-V C H VERLAG GMBH, 2022-10)
    Many materials have been engineered and commercialized as hemostatic agents. However, there is still a gap in the availability of hemostats that offer biocompatibility and biodegradability in combination with effective hemostatic properties. Cellulose nanofibers are investigated as hemostatic materials with most studies focusing on oxidized cellulose-derived hemostats. The recent studies demonstrate that by optimizing the morphological properties of nonoxidized cellulose nanofibers (CNFs) enhanced hemostasis is achieved. Herein, the hemostatic and wound-healing properties of CNFs with optimized morphology using two forms, gel, and sponge is investigated. In vitro thromboelastometry studies demonstrate that CNFs reduce clotting time by 68% (±SE 2%) and 88% (±SE 5%) in gel and sponge forms, respectively. In an in vivo murine liver injury model, CNFs significantly reduce blood loss by 38% (±SE 10%). The pH-neutral CNFs do not damage red blood cells, nor do they impede the proliferation of fibroblast or endothelial cells. Subcutaneously-implanted CNFs show a foreign body reaction resolving with the degradation of CNFs on histological examination and there is no scarring in the skin after 8 weeks. Demonstrating superior hemostatic performance in a variety of forms, as well as biocompatibility and biodegradability, CNFs hold significant potential for use in surgical and first-aid environments.
  • Item
    Thumbnail Image
    The "Spin-3/2 Bloch Equation": System matrix formalism of excitation, relaxation, and off-resonance effects in biological tissue
    Wu, C ; Blunck, Y ; Johnston, LA (WILEY, 2022-09)
    PURPOSE: This work proposes "Spin-3/2 Bloch Equation" (SBE), a consolidated formalism for spin-3/2 dynamics in biological environments. The formalism encapsulates excitation, relaxation, and off-resonance with accessible matrix representation for a straightforward implementation with high computational efficiency. THEORY: The SBE is derived using spherical tensor operators to encapsulate the spin-3/2 dynamics in biological systems in a single system matrix, a formalism akin to the well-known Bloch Equations (BE). METHODS: Using the proposed SBE, simulations of three classical 23 Na pulse sequences were performed to demonstrate the versatility and applicability of the model, returning the evolution of the 23 Na spin system during these experiments: soft rectangular and adiabatic inversion recovery (IR) and triple-quantum filtering. IR simulations were compared with two existing spin-3/2 simulators and the adaptive BE as a first-order approximation. RESULTS: The proposed SBE is straightforward to implement and facilitates accurate and fast simulations of the underlying higher order coherence in sodium experiments of biological tissues. SBE simulations and comparison spin-3/2 simulators outperform the BE simulations as expected, with the SBE offering superior computational efficiency achieved by the single system matrix formalism. CONCLUSION: The proposed SBE enables comprehensive and accurate simulations for spin-3/2 systems in biological tissue. With a one-line call to an ordinary differential equation solver, it offers a computationally efficient and accessible method for use in 23 Na pulse sequence design.
  • Item
    Thumbnail Image
    Effects of altered cellular ultrastructure on energy metabolism in diabetic cardiomyopathy: an in silico study.
    Ghosh, S ; Guglielmi, G ; Orfanidis, I ; Spill, F ; Hickey, A ; Hanssen, E ; Rajagopal, V (The Royal Society, 2022-11-21)
    Diabetic cardiomyopathy is a leading cause of heart failure in diabetes. At the cellular level, diabetic cardiomyopathy leads to altered mitochondrial energy metabolism and cardiomyocyte ultrastructure. We combined electron microscopy (EM) and computational modelling to understand the impact of diabetes-induced ultrastructural changes on cardiac bioenergetics. We collected transverse micrographs of multiple control and type I diabetic rat cardiomyocytes using EM. Micrographs were converted to finite-element meshes, and bioenergetics was simulated over them using a biophysical model. The simulations also incorporated depressed mitochondrial capacity for oxidative phosphorylation (OXPHOS) and creatine kinase (CK) reactions to simulate diabetes-induced mitochondrial dysfunction. Analysis of micrographs revealed a 14% decline in mitochondrial area fraction in diabetic cardiomyocytes, and an irregular arrangement of mitochondria and myofibrils. Simulations predicted that this irregular arrangement, coupled with the depressed activity of mitochondrial CK enzymes, leads to large spatial variation in adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio profile of diabetic cardiomyocytes. However, when spatially averaged, myofibrillar ADP/ATP ratios of a cardiomyocyte do not change with diabetes. Instead, average concentration of inorganic phosphate rises by 40% owing to lower mitochondrial area fraction and dysfunction in OXPHOS. These simulations indicate that a disorganized cellular ultrastructure negatively impacts metabolite transport in diabetic cardiomyopathy. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.