Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 34
  • Item
    No Preview Available
    Minimum clinical utility standards for wearable seizure detectors: A simulation study
    Goldenholz, DM ; Karoly, PJ ; Viana, PF ; Nurse, E ; Loddenkemper, T ; Schulze-Bonhage, A ; Vieluf, S ; Bruno, E ; Nasseri, M ; Richardson, MP ; Brinkmann, BH ; Westover, MB (WILEY, 2024-02-17)
    OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.
  • Item
    No Preview Available
    Model Parameter Estimation As Features to Predict the Duration of Epileptic Seizures From Onset.
    Liu, Y ; Xia, S ; Soto-Breceda, A ; Karoly, P ; Cook, MJ ; Grayden, DB ; Schmidt, D ; Kuhlmann, L (IEEE, 2023-07)
    The durations of epileptic seizures are linked to severity and risk for patients. It is unclear if the spatiotemporal evolution of a seizure has any relationship with its duration. Understanding such mechanisms may help reveal treatments for reducing the duration of a seizure. Here, we present a novel method to predict whether a seizure is going to be short or long at its onset using features that can be interpreted in the parameter space of a brain model. The parameters of a Jansen-Rit neural mass model were tracked given intracranial electroencephalography (iEEG) signals, and were processed as time series features using MINIROCKET. By analysing 2954 seizures from 10 patients, patient-specific classifiers were built to predict if a seizure would be short or long given 7 s of iEEG at seizure onset. The method achieved an area under the receiver operating characteristic curve (AUC) greater than 0.6 for five of 10 patients. The behaviour in the parameter space has shown different mechanisms are associated with short/long seizures.Clinical relevance-This shows that it is possible to classify whether a seizure will be short or long based on its early characteristics. Timely interventions and treatments can be applied if the duration of the seizures can be predicted.
  • Item
    No Preview Available
    Seizure occurrence is linked to multiday cycles in diverse physiological signals
    Gregg, NM ; Attia, TP ; Nasseri, M ; Joseph, B ; Karoly, P ; Cui, J ; Stirling, RE ; Viana, PF ; Richner, TJ ; Nurse, ES ; Schulze-Bonhage, A ; Cook, MJ ; Worrell, GA ; Richardson, MP ; Freestone, DR ; Brinkmann, BH (WILEY, 2023-06)
    OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.
  • Item
    No Preview Available
    Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states
    Schroeder, GM ; Karoly, PJ ; Maturana, M ; Panagiotopoulou, M ; Taylor, PN ; Cook, MJ ; Wang, Y (OXFORD UNIV PRESS, 2023-08-31)
    Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.
  • Item
    Thumbnail Image
    Seizure forecasting: Bifurcations in the long and winding road
    Baud, MO ; Proix, T ; Gregg, NM ; Brinkmann, BH ; Nurse, ES ; Cook, MJ ; Karoly, PJ (WILEY, 2023-12)
    To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.
  • Item
    No Preview Available
    Sleep and seizure risk in epilepsy: bed and wake times are more important than sleep duration
    Stirling, RE ; Hidajat, CM ; Grayden, DB ; D'Souza, WJ ; Naim-Feil, J ; Dell, KL ; Schneider, LD ; Nurse, E ; Freestone, D ; Cook, MJ ; Karoly, PJ (OXFORD UNIV PRESS, 2023-07-03)
    Sleep duration, sleep deprivation and the sleep-wake cycle are thought to play an important role in the generation of epileptic activity and may also influence seizure risk. Hence, people diagnosed with epilepsy are commonly asked to maintain consistent sleep routines. However, emerging evidence paints a more nuanced picture of the relationship between seizures and sleep, with bidirectional effects between changes in sleep and seizure risk in addition to modulation by sleep stages and transitions between stages. We conducted a longitudinal study investigating sleep parameters and self-reported seizure occurrence in an ambulatory at-home setting using mobile and wearable monitoring. Sixty subjects wore a Fitbit smartwatch for at least 28 days while reporting their seizure activity in a mobile app. Multiple sleep features were investigated, including duration, oversleep and undersleep, and sleep onset and offset times. Sleep features in participants with epilepsy were compared to a large (n = 37 921) representative population of Fitbit users, each with 28 days of data. For participants with at least 10 seizure days (n = 34), sleep features were analysed for significant changes prior to seizure days. A total of 4956 reported seizures (mean = 83, standard deviation = 130) and 30 485 recorded sleep nights (mean = 508, standard deviation = 445) were included in the study. There was a trend for participants with epilepsy to sleep longer than the general population, although this difference was not significant. Just 5 of 34 participants showed a significant difference in sleep duration the night before seizure days compared to seizure-free days. However, 14 of 34 subjects showed significant differences between their sleep onset (bed) and/or offset (wake) times before seizure occurrence. In contrast to previous studies, the current study found undersleeping was associated with a marginal 2% decrease in seizure risk in the following 48 h (P < 0.01). Nocturnal seizures were associated with both significantly longer sleep durations and increased risk of a seizure occurring in the following 48 h. Overall, the presented results demonstrated that day-to-day changes in sleep duration had a minimal effect on reported seizures, while patient-specific changes in bed and wake times were more important for identifying seizure risk the following day. Nocturnal seizures were the only factor that significantly increased the risk of seizures in the following 48 h on a group level. Wearables can be used to identify these sleep-seizure relationships and guide clinical recommendations or improve seizure forecasting algorithms.
  • Item
    No Preview Available
    Brain model state space reconstruction using an LSTM neural network
    Liu, Y ; Soto-Breceda, A ; Karoly, P ; Grayden, DB ; Zhao, Y ; Cook, MJ ; Schmidt, D ; Kuhlmann, L (IOP Publishing Ltd, 2023-06-01)
    Objective. Kalman filtering has previously been applied to track neural model states and parameters, particularly at the scale relevant to electroencephalography (EEG). However, this approach lacks a reliable method to determine the initial filter conditions and assumes that the distribution of states remains Gaussian. This study presents an alternative, data-driven method to track the states and parameters of neural mass models (NMMs) from EEG recordings using deep learning techniques, specifically a long short-term memory (LSTM) neural network.Approach. An LSTM filter was trained on simulated EEG data generated by a NMM using a wide range of parameters. With an appropriately customised loss function, the LSTM filter can learn the behaviour of NMMs. As a result, it can output the state vector and parameters of NMMs given observation data as the input.Main results. Test results using simulated data yielded correlations withRsquared of around 0.99 and verified that the method is robust to noise and can be more accurate than a nonlinear Kalman filter when the initial conditions of the Kalman filter are not accurate. As an example of real-world application, the LSTM filter was also applied to real EEG data that included epileptic seizures, and revealed changes in connectivity strength parameters at the beginnings of seizures.Significance. Tracking the state vector and parameters of mathematical brain models is of great importance in the area of brain modelling, monitoring, imaging and control. This approach has no need to specify the initial state vector and parameters, which is very difficult to do in practice because many of the variables being estimated cannot be measured directly in physiological experiments. This method may be applied using any NMM and, therefore, provides a general, novel, efficient approach to estimate brain model variables that are often difficult to measure.
  • Item
    No Preview Available
    Space-time resolved inference-based neurophysiological process imaging: Application to resting-state alpha rhythm
    Zhao, Y ; Boley, M ; Pelentritou, A ; Karoly, PJ ; Freestone, DR ; Liu, Y ; Muthukumaraswamy, S ; Woods, W ; Liley, D ; Kuhlmann, L (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2022-11)
    Neural processes are complex and difficult to image. This paper presents a new space-time resolved brain imaging framework, called Neurophysiological Process Imaging (NPI), that identifies neurophysiological processes within cerebral cortex at the macroscopic scale. By fitting uncoupled neural mass models to each electromagnetic source time-series using a novel nonlinear inference method, population averaged membrane potentials and synaptic connection strengths are efficiently and accurately inferred and imaged across the whole cerebral cortex at a resolution afforded by source imaging. The efficiency of the framework enables return of the augmented source imaging results overnight using high performance computing. This suggests it can be used as a practical and novel imaging tool. To demonstrate the framework, it has been applied to resting-state magnetoencephalographic source estimates. The results suggest that endogenous inputs to cingulate, occipital, and inferior frontal cortex are essential modulators of resting-state alpha power. Moreover, endogenous input and inhibitory and excitatory neural populations play varied roles in mediating alpha power in different resting-state sub-networks. The framework can be applied to arbitrary neural mass models and has broad applicability to image neural processes of different brain states.
  • Item
    Thumbnail Image
    Multiple mechanisms shape the relationship between pathway and duration of focal seizures
    Schroeder, GM ; Chowdhury, FA ; Cook, MJ ; Diehl, B ; Duncan, JS ; Karoly, PJ ; Taylor, PN ; Wang, Y (OXFORD UNIV PRESS, 2022-07-04)
    A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.
  • Item
    No Preview Available
    Ambient air pollution and epileptic seizures: A panel study in Australia
    Chen, Z ; Yu, W ; Xu, R ; Karoly, PJ ; Maturana, M ; Payne, DE ; Li, L ; Nurse, ES ; Freestone, DR ; Li, S ; Burkitt, AN ; Cook, MJ ; Guo, Y ; Grayden, DB (WILEY, 2022-07)
    OBJECTIVE: Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS: This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista data set, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary data set, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 μm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS: A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), whereas no significant associations were found for the other four air pollutants in the whole study population. Female participants had a significantly increased risk of seizures when exposed to elevated CO and NO2 , with RRs of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. In addition, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE: Daily exposure to elevated CO concentrations may be associated with an increased risk of epileptic seizures, especially for subclinical seizures.