Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 43
  • Item
    Thumbnail Image
    Multi-frequency steady-state visual evoked potential dataset
    Mu, J ; Liu, S ; Burkitt, AN ; Grayden, DB (NATURE PORTFOLIO, 2024-01-04)
    The Steady-State Visual Evoked Potential (SSVEP) is a widely used modality in Brain-Computer Interfaces (BCIs). Existing research has demonstrated the capabilities of SSVEP that use single frequencies for each target in various applications with relatively small numbers of commands required in the BCI. Multi-frequency SSVEP has been developed to extend the capability of single-frequency SSVEP to tasks that involve large numbers of commands. However, the development on multi-frequency SSVEP methodologies is falling behind compared to the number of studies with single-frequency SSVEP. This dataset was constructed to promote research in multi-frequency SSVEP by making SSVEP signals collected with different frequency stimulation settings publicly available. In this dataset, SSVEPs were collected from 35 participants using single-, dual-, and tri-frequency stimulation and with three different multi-frequency stimulation variants.
  • Item
    No Preview Available
    Effect of alpha range activity on SSVEP decoding in brain-computer interfaces
    Zehra, SR ; Mu, J ; Burkitt, AN ; Grayden, DB (IEEE, 2023)
    Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices. For BCI technology to be commercialized for wide scale applications, BCIs should be accurate, efficient, and exhibit consistency in performance for a wide variety of users. A core challenge is the physiological and anatomical differences amongst people, which causes a high variability amongst participants in BCI studies. Hence, it becomes necessary to analyze the mechanisms causing this variability and address them by improving the decoding algorithms. In this paper, a publicly available steady-state visual evoked potential (SSVEP) dataset is analyzed to study the effect of SSVEP flicker on the endogenous alpha power and the subsequent overall effect on the classification accuracy of the participants. It was observed that the participants with classification accuracy below 95% showed increased alpha power in their brain activities. Incorrect prediction in the decoding algorithm was observed a maximum number of times when the predicted frequency was in the range 9-12 Hz. We conclude that frequencies between 9-12 Hz may result in below par performance in some participants when canonical correlation analysis is used for classification.Clinical relevance-If alpha-band frequencies are used for SSVEP stimulation, alpha power interference in EEG may alter BCI accuracy for some users.
  • Item
    No Preview Available
    Autoregressive models for biomedical signal processing.
    Haderlein, JF ; Peterson, ADH ; Burkitt, AN ; Mareels, IMY ; Grayden, DB (IEEE, 2023-07)
    Autoregressive models are ubiquitous tools for the analysis of time series in many domains such as computational neuroscience and biomedical engineering. In these domains, data is, for example, collected from measurements of brain activity. Crucially, this data is subject to measurement errors as well as uncertainties in the underlying system model. As a result, standard signal processing using autoregressive model estimators may be biased. We present a framework for autoregressive modelling that incorporates these uncertainties explicitly via an overparameterised loss function. To optimise this loss, we derive an algorithm that alternates between state and parameter estimation. Our work shows that the procedure is able to successfully denoise time series and successfully reconstruct system parameters.Clinical relevance- This new paradigm can be used in a multitude of applications in neuroscience such as brain-computer interface data analysis and better understanding of brain dynamics in diseases such as epilepsy.
  • Item
    No Preview Available
    Learning the Vector Coding of Egocentric Boundary Cells from Visual Data
    Lian, Y ; Williams, S ; Alexander, AS ; Hasselmo, ME ; Burkitt, AN (SOC NEUROSCIENCE, 2023-07-12)
    The use of spatial maps to navigate through the world requires a complex ongoing transformation of egocentric views of the environment into position within the allocentric map. Recent research has discovered neurons in retrosplenial cortex and other structures that could mediate the transformation from egocentric views to allocentric views. These egocentric boundary cells respond to the egocentric direction and distance of barriers relative to an animal's point of view. This egocentric coding based on the visual features of barriers would seem to require complex dynamics of cortical interactions. However, computational models presented here show that egocentric boundary cells can be generated with a remarkably simple synaptic learning rule that forms a sparse representation of visual input as an animal explores the environment. Simulation of this simple sparse synaptic modification generates a population of egocentric boundary cells with distributions of direction and distance coding that strikingly resemble those observed within the retrosplenial cortex. Furthermore, some egocentric boundary cells learnt by the model can still function in new environments without retraining. This provides a framework for understanding the properties of neuronal populations in the retrosplenial cortex that may be essential for interfacing egocentric sensory information with allocentric spatial maps of the world formed by neurons in downstream areas, including the grid cells in entorhinal cortex and place cells in the hippocampus.SIGNIFICANCE STATEMENT The computational model presented here demonstrates that the recently discovered egocentric boundary cells in retrosplenial cortex can be generated with a remarkably simple synaptic learning rule that forms a sparse representation of visual input as an animal explores the environment. Additionally, our model generates a population of egocentric boundary cells with distributions of direction and distance coding that strikingly resemble those observed within the retrosplenial cortex. This transformation between sensory input and egocentric representation in the navigational system could have implications for the way in which egocentric and allocentric representations interface in other brain areas.
  • Item
    No Preview Available
    Spike-timing dependent plasticity partially compensates for neural delays in a multi-layered network of motion-sensitive neurons.
    Sexton, CM ; Burkitt, AN ; Hogendoorn, H ; Perrinet, LU (Public Library of Science (PLoS), 2023-09)
    The ability of the brain to represent the external world in real-time is impacted by the fact that neural processing takes time. Because neural delays accumulate as information progresses through the visual system, representations encoded at each hierarchical level are based upon input that is progressively outdated with respect to the external world. This 'representational lag' is particularly relevant to the task of localizing a moving object-because the object's location changes with time, neural representations of its location potentially lag behind its true location. Converging evidence suggests that the brain has evolved mechanisms that allow it to compensate for its inherent delays by extrapolating the position of moving objects along their trajectory. We have previously shown how spike-timing dependent plasticity (STDP) can achieve motion extrapolation in a two-layer, feedforward network of velocity-tuned neurons, by shifting the receptive fields of second layer neurons in the opposite direction to a moving stimulus. The current study extends this work by implementing two important changes to the network to bring it more into line with biology: we expanded the network to multiple layers to reflect the depth of the visual hierarchy, and we implemented more realistic synaptic time-courses. We investigate the accumulation of STDP-driven receptive field shifts across several layers, observing a velocity-dependent reduction in representational lag. These results highlight the role of STDP, operating purely along the feedforward pathway, as a developmental strategy for delay compensation.
  • Item
    No Preview Available
    Effect of sparsity on network stability in random neural networks obeying Dale's law
    Harris, ID ; Meffin, H ; Burkitt, AN ; Peterson, ADH (American Physical Society, 2023-10-01)
    This paper examines the relationship between sparse random network architectures and neural network stability by examining the eigenvalue spectral distribution. Specifically, we generalize classical eigenspectral results to sparse (not fully connected) connectivity matrices obeying Dale's law: neurons function as either excitatory (E) or inhibitory (I). By defining α as the probability that a neuron is connected to another neuron, we give explicit formulas that show how sparsity interacts with the E-I population statistics to scale key features of the eigenspectrum in both the balanced and unbalanced cases. Our results show that the eigenspectral outlier is linearly scaled by α, but the eigenspectral radius and density now depend on a nonlinear interaction between α and the E-I population means and variances. Contrary to previous results, we demonstrate that a nonuniform eigenspectral density results if any of the E-I population statistics differ, not just the variances. We also find that local eigenvalue outliers are present for sparse random matrices obeying Dale's law, and demonstrate that these eigenvalues can be controlled by a modified zero row-sum constraint for the balanced case, however, they persist in the unbalanced case. We examine all levels of connection sparsity 0≤α≤1 and distributed E-I population weights to describe a general class of sparse connectivity structures which unifies all the previous results as special cases of our framework. Sparsity and Dale's law are both fundamental anatomical properties of biological neural networks. We generalize their combined effects on the eigenspectrum of random neural networks, thereby gaining insight into network stability, state transitions, and the structure-function relationship.
  • Item
    No Preview Available
    Evaluation of Optimal Stimuli for SSVEP-Based Augmented Reality Brain-Computer Interfaces
    Zehra, SR ; Mu, J ; Syiem, BV ; Burkitt, AN ; Grayden, DB (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023)
  • Item
    No Preview Available
    Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks
    Habibollahi, F ; Kagan, BJ ; Burkitt, AN ; French, C (NATURE PORTFOLIO, 2023-08-30)
    Understanding how brains process information is an incredibly difficult task. Amongst the metrics characterising information processing in the brain, observations of dynamic near-critical states have generated significant interest. However, theoretical and experimental limitations associated with human and animal models have precluded a definite answer about when and why neural criticality arises with links from attention, to cognition, and even to consciousness. To explore this topic, we used an in vitro neural network of cortical neurons that was trained to play a simplified game of 'Pong' to demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that critical dynamics emerge when neural networks receive task-related structured sensory input, reorganizing the system to a near-critical state. Additionally, better task performance correlated with proximity to critical dynamics. However, criticality alone is insufficient for a neuronal network to demonstrate learning in the absence of additional information regarding the consequences of previous actions. These findings offer compelling support that neural criticality arises as a base feature of incoming structured information processing without the need for higher order cognition.
  • Item
    Thumbnail Image
    Quantifying visual acuity for pre-clinical testing of visual prostheses
    Spencer, M ; Kameneva, T ; Grayden, DB ; Burkitt, AN ; Meffin, H (IOP Publishing Ltd, 2023-02-01)
    Objective.Visual prostheses currently restore only limited vision. More research and pre-clinical work are required to improve the devices and stimulation strategies that are used to induce neural activity that results in visual perception. Evaluation of candidate strategies and devices requires an objective way to convert measured and modelled patterns of neural activity into a quantitative measure of visual acuity.Approach.This study presents an approach that compares evoked patterns of neural activation with target and reference patterns. A d-prime measure of discriminability determines whether the evoked neural activation pattern is sufficient to discriminate between the target and reference patterns and thus provides a quantified level of visual perception in the clinical Snellen and MAR scales. The magnitude of the resulting value was demonstrated using scaled standardized 'C' and 'E' optotypes.Main results.The approach was used to assess the visual acuity provided by two alternative stimulation strategies applied to simulated retinal implants with different electrode pitch configurations and differently sized spreads of neural activity. It was found that when there is substantial overlap in neural activity generated by different electrodes, an estimate of acuity based only upon electrode pitch is incorrect; our proposed method gives an accurate result in both circumstances.Significance.Quantification of visual acuity using this approach in pre-clinical development will allow for more rapid and accurate prototyping of improved devices and neural stimulation strategies.
  • Item
    No Preview Available
    Preferential modulation of individual retinal ganglion cells by electrical stimulation
    Yunzab, M ; Soto-Breceda, A ; Maturana, M ; Kirkby, S ; Slattery, M ; Newgreen, A ; Meffin, H ; Kameneva, T ; Burkitt, AN ; Ibbotson, M ; Tong, W (IOP Publishing Ltd, 2022-08-01)
    Objective.Retinal prostheses have had limited success in vision restoration through electrical stimulation of surviving retinal ganglion cells (RGCs) in the degenerated retina. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to visiual processing. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs).Approach.We recorded the responses of RGCs using whole-cell patch clamping and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation.Main results. We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared based on the morphological and light response types of the cells. By re-delivering stimulation trains that were composed of the tERFs obtained from different cells, we could preferentially stimulate individual RGCs as the cells showed lower activation thresholds to their own tERFs.Significance.This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.