Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    A Neural Mass Model of Spontaneous Burst Suppression and Epileptic Seizures
    Freestone, DR ; Nesic, D ; Jafarian, A ; Cook, MJ ; Grayden, DB (IEEE, 2013)
    The paper presents a neural mass model that is capable of simulating the transition to and from various forms of paroxysmal activity such as burst suppression and epileptic seizure-like waveforms. These events occur without changing parameters in the model. The model is based on existing neural mass models, with the addition of feedback of fast dynamics to create slowly time varying parameters, or slow states. The goal of this research is to establish a link between system properties that modulate neural activity and the fast changing dynamics, such as membrane potentials and firing rates that can be manipulated using electrical stimulation. Establishing this link is likely to be a necessary component of a closed-loop system for feedback control of pathological neural activity.
  • Item
    Thumbnail Image
    INFERRING PATIENT-SPECIFIC PHYSIOLOGICAL PARAMETERS FROM INTRACRANIAL EEG: APPLICATION TO CLINICAL DATA
    Shmuely, S ; Freestone, DR ; Grayden, DB ; Nesic, D ; Cook, M (WILEY-BLACKWELL, 2012-09-01)
    Purpose: Intracranial EEG (iEEG) provides information regarding where and when seizures occur, whilst the underlying mechanisms are hidden. However physiologically plausible mechanisms for seizure generation and termination are explained by neural mass models, which describe the macroscopic neural dynamics. Fusion of models with patient-specific data allows estimation and tracking of the normally hidden physiological parameters. By monitoring changes in physiology, a new understanding of seizures can be achieved. This work addresses model-data fusion for iEEG for application in a clinical setting. Method: Data was recorded from three patients undergoing evaluation for epilepsy-related surgery at St. Vincent's Hospital, Melbourne. Using this data, we created patient-specific neural mass mathematical models based on the formulation of Jansen and Rit (1995). The parameters that were estimated include the synaptic gains, time constants, and the firing threshold. The estimation algorithm utilized the Unscented Kalman Filter (Julier and Uhlmann, 1997). Result: We demonstrate how parameters changed in relation to seizure initiation, evolution and termination. We also show within-patient (across different seizures) and between-patient specificity of the parameter estimates. Conclusion: The fusion of clinical data and mathematical models can be used to infer valuable information about the underlying mechanisms of epileptic seizure generation. This information could be used to develop novel therapeutic strategies
  • Item
    Thumbnail Image
    INFERRING PATIENT-SPECIFIC PHYSIOLOGICAL PARAMETERS FROM INTRACRANIAL EEG: THEORETICAL STUDIES
    Freestone, DR ; Grayden, DB ; Cook, M ; Nesic, D (WILEY-BLACKWELL, 2012-09)
  • Item
    Thumbnail Image
    PATIENT-SPECIFIC NEURAL MASS MODELING - STOCHASTIC AND DETERMINISTIC METHODS
    Freestone, DR ; Kuhlmann, L ; Chong, MS ; Nesic, D ; Grayden, DB ; Aram, P ; Postoyan, R ; CooK, MJ ; Tetzlaff, R ; Elger, CE ; Lehnertz, K (WORLD SCIENTIFIC PUBL CO PTE LTD, 2013)
    Deterministic and stochastic methods for online state and parameter estimation for neural mass models are presented and applied to synthetic and real seizure electrocorticographic signals in order to determine underlying brain changes that cannot easily be measured. The first ever online estimation of neural mass model parameters from real seizure data is presented. It is shown that parameter changes occur that are consistent with expected brain changes underlying seizures, such as increases in postsynaptic potential amplitudes, increases in the inhibitory postsynaptic time-constant and decreases in the firing threshold at seizure onset, as well as increases in the firing threshold as the seizure progresses towards termination. In addition, the deterministic and stochastic estimation methods are compared and contrasted. This work represents an important foundation for the development of biologically-inspired methods to image underlying brain changes and to develop improved methods for neurological monitoring, control and treatment.
  • Item
    Thumbnail Image
    Electrical probing of cortical excitability in patients with epilepsy
    Freestone, DR ; Kuhlmann, L ; Grayden, DB ; Burkitt, AN ; Lai, A ; Nelson, TS ; Vogrin, S ; Murphy, M ; D'Souza, W ; Badawy, R ; Nesic, D ; Cook, MJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2011-12)
    Standard methods for seizure prediction involve passive monitoring of intracranial electroencephalography (iEEG) in order to track the 'state' of the brain. This paper introduces a new method for measuring cortical excitability using an electrical probing stimulus. Electrical probing enables feature extraction in a more robust and controlled manner compared to passively tracking features of iEEG signals. The probing stimuli consist of 100 bi-phasic pulses, delivered every 10 min. Features representing neural excitability are estimated from the iEEG responses to the stimuli. These features include the amplitude of the electrically evoked potential, the mean phase variance (univariate), and the phase-locking value (bivariate). In one patient, it is shown how the features vary over time in relation to the sleep-wake cycle and an epileptic seizure. For a second patient, it is demonstrated how the features vary with the rate of interictal discharges. In addition, the spatial pattern of increases and decreases in phase synchrony is explored when comparing periods of low and high interictal discharge rates, or sleep and awake states. The results demonstrate a proof-of-principle for the method to be applied in a seizure anticipation framework. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.
  • Item
    Thumbnail Image
    Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG
    Reuben, C ; Karoly, P ; Freestone, DR ; Temko, A ; Barachant, A ; Li, F ; Titericz, G ; Lang, BW ; Lavery, D ; Roman, K ; Broadhead, D ; Jones, G ; Tang, Q ; Ivanenko, I ; Panichev, O ; Proix, T ; Nahlik, M ; Grunberg, DB ; Grayden, DB ; Cook, MJ ; Kuhlmann, L (Wiley, 2020-02)
    Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state‐of‐the‐art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning–based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient‐specific sleep‐wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
  • Item
    Thumbnail Image
    When can we trust responders? Serious concerns when using 50% response rate to assess clinical trials
    Karoly, PJ ; Romero, J ; Cook, MJ ; Freestone, DR ; Goldenholz, DM (Wiley, 2019-09-01)
    Individual seizure rates are highly volatile, with large fluctuations from month‐to‐month. Nevertheless, changes in individual mean seizure rates are used to measure whether or not trial participants successfully respond to treatment. This study aims to quantify the challenges in identifying individual treatment responders in epilepsy. A power calculation was performed to determine the trial duration required to detect a significant 50% decrease in seizure rates (P < .05) for individuals. Seizure rate simulations were also performed to determine the number of people who would appear to be 50% responders by chance. Seizure rate statistics were derived from long‐term seizure counts recorded during a previous clinical trial for an implantable seizure monitoring device. We showed that individual variance in monthly seizure rates can lead to an unacceptably high false‐positive rate in the detection of individual treatment responders. This error rate cannot be reduced by increasing the trial population; however, it can be reduced by increasing the duration of clinical trials. This finding suggests that some drugs may be incorrectly evaluated as effective; or, conversely, that helpful drugs could be rejected based on 50% response rates. It is important to pursue more nuanced approaches to measuring individual treatment response, which consider the patient‐specific distributions of seizure rates.
  • Item
    Thumbnail Image
    Postictal suppression and seizure durations: A patient-specific, long-term iEEG analysis
    Payne, DE ; Karoly, PJ ; Freestone, DR ; Boston, R ; D'Souza, W ; Nurse, E ; Kuhlmann, L ; Cook, MJ ; Grayden, DB (WILEY, 2018-05)
    OBJECTIVE: We report on patient-specific durations of postictal periods in long-term intracranial electroencephalography (iEEG) recordings. The objective was to investigate the relationship between seizure duration and postictal suppression duration. METHODS: Long-term recording iEEG from 9 patients (>50 seizures recorded) were analyzed. In total, 2310 seizures were recorded during a total of 13.8 years of recording. Postictal suppression duration was calculated as the duration after seizure termination until total signal energy returned to background levels. The relationship between seizure duration and postictal suppression duration was quantified using the correlation coefficient (r). The effects of populations of seizures within patients, on correlations, were also considered. Populations of seizures within patients were distinguished by seizure duration thresholds and k-means clustering along the dimensions of seizure duration and postictal suppression duration. The effects of bursts of seizures were also considered by defining populations based on interseizure interval (ISI). RESULTS: Seizure duration accounted for 40% of postictal suppression duration variance, aggregated across all patients and seizures. Seizure duration accounted for more than 25% of the variance in postictal suppression duration in 2 patients and accounted for less than 25% in the remaining 7. In 3 patients, heat maps showed multiple distinct postictal patterns indicating multiple populations of seizures. When accounting for these populations, seizure duration accounted for less than 25% of the variance in postictal duration in all populations. Variance in postictal suppression duration accounted for less than 10% of ISI variance in all patients. SIGNIFICANCE: We have previously demonstrated that some patients have multiple seizure populations distinguishable by seizure duration. This article shows that different seizure populations have distinct and consistent postictal behaviors. The existence of multiple populations in some patients has implications for seizure management and forecasting, whereas the distinct postictal behaviors may have implications for sudden unexpected death in epilepsy (SUDEP) prediction and prevention.
  • Item
    Thumbnail Image
    Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast
    Payne, DE ; Dell, KL ; Karoly, PJ ; Kremen, V ; Gerla, V ; Kuhlmann, L ; Worrell, GA ; Cook, MJ ; Grayden, DB ; Freestone, DR (WILEY, 2021-02)
    OBJECTIVE: Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS: This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS: For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE: Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
  • Item
    Thumbnail Image
    Forecasting cycles of seizure likelihood
    Karoly, PJ ; Cook, MJ ; Maturana, M ; Nurse, ES ; Payne, D ; Brinkmann, BH ; Grayden, DB ; Dumanis, SB ; Richardson, MP ; Worrell, GA ; Schulze-Bonhage, A ; Kuhlmann, L ; Freestone, DR (Wiley, 2020-03-27)
    Objective Seizure unpredictability is rated as one of the most challenging aspects of living with epilepsy. Seizure likelihood can be influenced by a range of environmental and physiological factors that are difficult to measure and quantify. However, some generalizable patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit circadian rhythms in their seizure times, and many also show slower, multiday patterns. Seizure cycles can be measured using a range of recording modalities, including self‐reported electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile seizure diary app. Methods Forecasts based on circadian and multiday seizure cycles were tested pseudoprospectively using data from 50 app users (mean of 109 seizures per subject). Individuals' strongest cycles were estimated from their reported seizure times and used to derive the likelihood of future seizures. The forecasting approach was validated using self‐reported events and electrographic seizures from the Neurovista dataset, an existing database of long‐term electroencephalography that has been widely used to develop forecasting algorithms. Results The validation dataset showed that forecasts of seizure likelihood based on self‐reported cycles were predictive of electrographic seizures for approximately half the cohort. Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their time in a low‐risk state, with 14.8% of their time in a high‐risk warning state. On average, 69.1% of seizures occurred during high‐risk states and 10.5% of seizures occurred in low‐risk states. Significance Seizure diary apps can provide personalized forecasts of seizure likelihood that are accurate and clinically relevant for electrographic seizures. These results have immediate potential for translation to a prospective seizure forecasting trial using a mobile diary app. It is our hope that seizure forecasting apps will one day give people with epilepsy greater confidence in managing their daily activities.