Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Analytic synchronization conditions for a network of Wilson and Cowan oscillators
    Ahmadizadeh, S ; Nesic, D ; Grayden, DB ; Freestone, DR (IEEE, 2015)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address local synchronization for these types of neural mass models. By exploiting the linearized model around a limit cycle, we analyze synchronization within a network for weak, intermediate, and strong coupling. We use two-time scale averaging and the Chetaev theorem to analytically check the absence or presence of synchronization in the network with weak coupling. We also utilize the Chetaev theorem to analytically prove synchronization death in a network with strong coupling. For intermediate coupling, we use a recently proposed numerical approach to prove synchronization in the network. Simulation results confirm and illustrate our results.
  • Item
    Thumbnail Image
    On synchronization of networks of Wilson-Cowan oscillators with diffusive coupling
    Ahmadizadeh, S ; Nesic, D ; Freestone, DR ; Grayden, DB (PERGAMON-ELSEVIER SCIENCE LTD, 2016-09)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address conditions for local synchronization for this type of neural mass models. By analyzing the linearized model around a limit cycle, we study synchronization within a network with direct coupling. We use both analytical and numerical approaches to link the presence or absence of synchronized behavior to the location of eigenvalues of the Laplacian matrix. For the analytical part, we apply two-time scale averaging and the Chetaev theorem, while, for the remaining part, we use a recently proposed numerical approach. Sufficient conditions are established to highlight the effect of network topology on synchronous behavior when the interconnection is undirected. These conditions are utilized to address points that have been previously reported in the literature through simulations: synchronization might persist or vanish in the presence of perturbation in the interconnection gains. Simulation results confirm and illustrate our results.
  • Item
    Thumbnail Image
    Bifurcation analysis of two coupled Jansen-Rit neural mass models
    Ahmadizadeh, S ; Karoly, PJ ; Nesic, D ; Grayden, DB ; Cook, MJ ; Soudry, D ; Freestone, DR ; Cymbalyuk, G (PUBLIC LIBRARY SCIENCE, 2018-03-27)
    We investigate how changes in network structure can lead to pathological oscillations similar to those observed in epileptic brain. Specifically, we conduct a bifurcation analysis of a network of two Jansen-Rit neural mass models, representing two cortical regions, to investigate different aspects of its behavior with respect to changes in the input and interconnection gains. The bifurcation diagrams, along with simulated EEG time series, exhibit diverse behaviors when varying the input, coupling strength, and network structure. We show that this simple network of neural mass models can generate various oscillatory activities, including delta wave activity, which has not been previously reported through analysis of a single Jansen-Rit neural mass model. Our analysis shows that spike-wave discharges can occur in a cortical region as a result of input changes in the other region, which may have important implications for epilepsy treatment. The bifurcation analysis is related to clinical data in two case studies.