Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface
    Gerboni, G ; John, SE ; Rind, GS ; Ronayne, SM ; May, CN ; Oxley, TJ ; Grayden, DB ; Opie, NL ; Wong, YT (IOP PUBLISHING LTD, 2018-09)
  • Item
    Thumbnail Image
    Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable (vol 8, 8427, 2018)
    John, SE ; Opie, NL ; Wong, YT ; Rind, GS ; Ronayne, SM ; Gerboni, G ; Bauquier, SH ; O'Brien, TJ ; May, CN ; Grayden, DB ; Oxley, TJ (NATURE PORTFOLIO, 2018-11-27)
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
  • Item
    Thumbnail Image
    Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable
    John, SE ; Opie, NL ; Wong, YT ; Rind, GS ; Ronayne, SM ; Gerboni, G ; Bauquier, SH ; O'Brien, TJ ; May, CN ; Grayden, DB ; Oxley, TJ (NATURE PUBLISHING GROUP, 2018-05-30)
    Recent work has demonstrated the feasibility of minimally-invasive implantation of electrodes into a cortical blood vessel. However, the effect of the dura and blood vessel on recording signal quality is not understood and may be a critical factor impacting implementation of a closed-loop endovascular neuromodulation system. The present work compares the performance and recording signal quality of a minimally-invasive endovascular neural interface with conventional subdural and epidural interfaces. We compared bandwidth, signal-to-noise ratio, and spatial resolution of recorded cortical signals using subdural, epidural and endovascular arrays four weeks after implantation in sheep. We show that the quality of the signals (bandwidth and signal-to-noise ratio) of the endovascular neural interface is not significantly different from conventional neural sensors. However, the spatial resolution depends on the array location and the frequency of recording. We also show that there is a direct correlation between the signal-noise-ratio and classification accuracy, and that decoding accuracy is comparable between electrode arrays. These results support the consideration for use of an endovascular neural interface in a clinical trial of a novel closed-loop neuromodulation technology.
  • Item
    No Preview Available
    Feasibility of a Chronic, Minimally Invasive Endovascular Neural Interface
    Opie, NL ; Rind, GS ; John, SE ; Ronayne, SM ; Grayden, DB ; Burkitt, AN ; May, CN ; O'Brien, TJ ; Oxley, TJ ; Patton, J ; Barbieri, R ; Ji, J ; Jabbari, E ; Dokos, S ; Mukkamala, R ; Guiraud, D ; Jovanov, E ; Dhaher, Y ; Panescu, D ; Vangils, M ; Wheeler, B ; Dhawan, AP (IEEE, 2016)
    Development of a neural interface that can be implanted without risky, open brain surgery will increase the safety and viability of chronic neural recording arrays. We have developed a minimally invasive surgical procedure and an endovascular electrode-array that can be delivered to overlie the cortex through blood vessels. Here, we describe feasibility of the endovascular interface through electrode viability, recording potential and safety. Electrochemical impedance spectroscopy demonstrated that electrode impedance was stable over 91 days and low frequency phase could be used to infer electrode incorporation into the vessel wall. Baseline neural recording were used to identify the maximum bandwidth of the neural interface, which remained stable around 193 Hz for six months. Cross-sectional areas of the implanted vessels were non-destructively measured using the Australian Synchrotron. There was no case of occlusion observed in any of the implanted animals. This work demonstrates the feasibility of an endovascular neural interface to safely and efficaciously record neural information over a chronic time course.