Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 28
  • Item
    Thumbnail Image
    A comparison of open-loop and closed-loop stimulation strategies to control excitation of retinal ganglion cells
    Kameneva, T ; Zarelli, D ; Nesic, D ; Grayden, DB ; Burkitt, AN ; Meffin, H (Elsevier, 2014-11-01)
    Currently, open-loop stimulation strategies are prevalent in medical bionic devices. These strategies involve setting electrical stimulation that does not change in response to neural activity. We investigate through simulation the advantages of using a closed-loop strategy that sets stimulation level based on continuous measurement of the level of neural activity. We propose a model-based controller design to control activation of retinal neurons. To deal with the lack of controllability and observability of the whole system, we use Kalman decomposition and control only the controllable and observable part. We show that the closed-loop controller performs better than the open-loop controller when perturbations are introduced into the system. We envisage that our work will give rise to more investigations of the closed-loop techniques in basic neuroscience research and in clinical applications of medical bionics.
  • Item
    Thumbnail Image
    On synchronization of networks of Wilson-Cowan oscillators with diffusive coupling
    Ahmadizadeh, S ; Nesic, D ; Freestone, DR ; Grayden, DB (PERGAMON-ELSEVIER SCIENCE LTD, 2016-09)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address conditions for local synchronization for this type of neural mass models. By analyzing the linearized model around a limit cycle, we study synchronization within a network with direct coupling. We use both analytical and numerical approaches to link the presence or absence of synchronized behavior to the location of eigenvalues of the Laplacian matrix. For the analytical part, we apply two-time scale averaging and the Chetaev theorem, while, for the remaining part, we use a recently proposed numerical approach. Sufficient conditions are established to highlight the effect of network topology on synchronous behavior when the interconnection is undirected. These conditions are utilized to address points that have been previously reported in the literature through simulations: synchronization might persist or vanish in the presence of perturbation in the interconnection gains. Simulation results confirm and illustrate our results.
  • Item
    No Preview Available
    Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface
    Gerboni, G ; John, SE ; Rind, GS ; Ronayne, SM ; May, CN ; Oxley, TJ ; Grayden, DB ; Opie, NL ; Wong, YT (IOP PUBLISHING LTD, 2018-09)
  • Item
    Thumbnail Image
    Postictal suppression and seizure durations: A patient-specific, long-term iEEG analysis
    Payne, DE ; Karoly, PJ ; Freestone, DR ; Boston, R ; D'Souza, W ; Nurse, E ; Kuhlmann, L ; Cook, MJ ; Grayden, DB (WILEY, 2018-05)
    OBJECTIVE: We report on patient-specific durations of postictal periods in long-term intracranial electroencephalography (iEEG) recordings. The objective was to investigate the relationship between seizure duration and postictal suppression duration. METHODS: Long-term recording iEEG from 9 patients (>50 seizures recorded) were analyzed. In total, 2310 seizures were recorded during a total of 13.8 years of recording. Postictal suppression duration was calculated as the duration after seizure termination until total signal energy returned to background levels. The relationship between seizure duration and postictal suppression duration was quantified using the correlation coefficient (r). The effects of populations of seizures within patients, on correlations, were also considered. Populations of seizures within patients were distinguished by seizure duration thresholds and k-means clustering along the dimensions of seizure duration and postictal suppression duration. The effects of bursts of seizures were also considered by defining populations based on interseizure interval (ISI). RESULTS: Seizure duration accounted for 40% of postictal suppression duration variance, aggregated across all patients and seizures. Seizure duration accounted for more than 25% of the variance in postictal suppression duration in 2 patients and accounted for less than 25% in the remaining 7. In 3 patients, heat maps showed multiple distinct postictal patterns indicating multiple populations of seizures. When accounting for these populations, seizure duration accounted for less than 25% of the variance in postictal duration in all populations. Variance in postictal suppression duration accounted for less than 10% of ISI variance in all patients. SIGNIFICANCE: We have previously demonstrated that some patients have multiple seizure populations distinguishable by seizure duration. This article shows that different seizure populations have distinct and consistent postictal behaviors. The existence of multiple populations in some patients has implications for seizure management and forecasting, whereas the distinct postictal behaviors may have implications for sudden unexpected death in epilepsy (SUDEP) prediction and prevention.
  • Item
    Thumbnail Image
    The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results
    Maturana, MI ; Kameneva, T ; Burkitt, AN ; Meffin, H ; Grayden, DB (SPRINGER, 2014-04)
    Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area.
  • Item
    Thumbnail Image
    Coexistence of Reward and Unsupervised Learning During the Operant Conditioning of Neural Firing Rates
    Kerr, RR ; Grayden, DB ; Thomas, DA ; Gilson, M ; Burkitt, AN ; Cymbalyuk, G (PUBLIC LIBRARY SCIENCE, 2014-01-27)
    A fundamental goal of neuroscience is to understand how cognitive processes, such as operant conditioning, are performed by the brain. Typical and well studied examples of operant conditioning, in which the firing rates of individual cortical neurons in monkeys are increased using rewards, provide an opportunity for insight into this. Studies of reward-modulated spike-timing-dependent plasticity (RSTDP), and of other models such as R-max, have reproduced this learning behavior, but they have assumed that no unsupervised learning is present (i.e., no learning occurs without, or independent of, rewards). We show that these models cannot elicit firing rate reinforcement while exhibiting both reward learning and ongoing, stable unsupervised learning. To fix this issue, we propose a new RSTDP model of synaptic plasticity based upon the observed effects that dopamine has on long-term potentiation and depression (LTP and LTD). We show, both analytically and through simulations, that our new model can exhibit unsupervised learning and lead to firing rate reinforcement. This requires that the strengthening of LTP by the reward signal is greater than the strengthening of LTD and that the reinforced neuron exhibits irregular firing. We show the robustness of our findings to spike-timing correlations, to the synaptic weight dependence that is assumed, and to changes in the mean reward. We also consider our model in the differential reinforcement of two nearby neurons. Our model aligns more strongly with experimental studies than previous models and makes testable predictions for future experiments.
  • Item
    Thumbnail Image
    An investigation of dentritic delay in octopus cells of the mammalian cochlear nucleus
    Spencer, MJ ; Grayden, DB ; Bruce, IC ; Meffin, H ; Burkitt, AN (FRONTIERS RES FOUND, 2012-10-22)
    Octopus cells, located in the mammalian auditory brainstem, receive their excitatory synaptic input exclusively from auditory nerve fibers (ANFs). They respond with accurately timed spikes but are broadly tuned for sound frequency. Since the representation of information in the auditory nerve is well understood, it is possible to pose a number of questions about the relationship between the intrinsic electrophysiology, dendritic morphology, synaptic connectivity, and the ultimate functional role of octopus cells in the brainstem. This study employed a multi-compartmental Hodgkin-Huxley model to determine whether dendritic delay in octopus cells improves synaptic input coincidence detection in octopus cells by compensating for the cochlear traveling wave delay. The propagation time of post-synaptic potentials from synapse to soma was investigated. We found that the total dendritic delay was approximately 0.275 ms. It was observed that low-threshold potassium channels in the dendrites reduce the amplitude dependence of the dendritic delay of post-synaptic potentials. As our hypothesis predicted, the model was most sensitive to acoustic onset events, such as the glottal pulses in speech when the synaptic inputs were arranged such that the model's dendritic delay compensated for the cochlear traveling wave delay across the ANFs. The range of sound frequency input from ANFs was also investigated. The results suggested that input to octopus cells is dominated by high frequency ANFs.
  • Item
    Thumbnail Image
    Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings
    Benovitski, YB ; Lai, A ; McGowan, CC ; Burns, O ; Maxim, V ; Nayagam, DAX ; Millard, R ; Rathbone, GD ; le Chevoir, MA ; Williams, RA ; Grayden, DB ; May, CN ; Murphy, M ; D'Souza, WJ ; Cook, MJ ; Williams, CE (Elsevier, 2017-09-01)
    OBJECTIVE: Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. METHODS: Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. RESULTS: EEG amplitude was larger in the peg compared with the disk and ring electrodes (p<0.05). Similarly, chewing artifacts were lower in the peg electrodes (p<0.05). Electrode impedance increased after long-term implantation particularly for those within the bone (p<0.01). Micro-CT scans indicated that all electrodes stayed within the sub-scalp layers. All pegs remained within the burr holes as implanted with no evidence of extrusion. Eight of 10 disks partially eroded into the bone by 1.0mm from the surface of the skull. The ring arrays remained within the sub-scalp layers close to implantation site. Histology revealed that the electrodes were encapsulated in a thin fibrous tissue adjacent to the pericranium. Overlying this was a loose connective layer and scalp. Erosion into the bone occurred under the rim of the sub-pericranial disk electrodes. CONCLUSIONS: The results indicate that the peg electrodes provided high quality EEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal.
  • Item
    No Preview Available
    The circadian profile of epilepsy improves seizure forecasting
    Karoly, PJ ; Ung, H ; Grayden, DB ; Kuhlmann, L ; Leyde, K ; Cook, MJ ; Freestone, DR (OXFORD UNIV PRESS, 2017-08)
    It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.
  • Item
    Thumbnail Image
    Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System
    Kiral-Kornek, I ; Roy, S ; Nurse, E ; Mashford, B ; Karoly, P ; Carroll, T ; Payne, D ; Saha, S ; Baldassano, S ; O'Brien, T ; Grayden, D ; Cook, M ; Freestone, D ; Harrer, S (ELSEVIER, 2018-01)
    BACKGROUND: Seizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs. METHODS: Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed as part of a pseudoprospective seizure prediction study. First, a deep learning classifier was trained to distinguish between preictal and interictal signals. Second, classifier performance was tested on held-out iEEG data from all patients and benchmarked against the performance of a random predictor. Third, the prediction system was tuned so sensitivity or time in warning could be prioritized by the patient. Finally, a demonstration of the feasibility of deployment of the prediction system onto an ultra-low power neuromorphic chip for autonomous operation on a wearable device is provided. RESULTS: The prediction system achieved mean sensitivity of 69% and mean time in warning of 27%, significantly surpassing an equivalent random predictor for all patients by 42%. CONCLUSION: This study demonstrates that deep learning in combination with neuromorphic hardware can provide the basis for a wearable, real-time, always-on, patient-specific seizure warning system with low power consumption and reliable long-term performance.