Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG
    Reuben, C ; Karoly, P ; Freestone, DR ; Temko, A ; Barachant, A ; Li, F ; Titericz, G ; Lang, BW ; Lavery, D ; Roman, K ; Broadhead, D ; Jones, G ; Tang, Q ; Ivanenko, I ; Panichev, O ; Proix, T ; Nahlik, M ; Grunberg, DB ; Grayden, DB ; Cook, MJ ; Kuhlmann, L (Wiley, 2020-02)
    Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state‐of‐the‐art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning–based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient‐specific sleep‐wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
  • Item
    Thumbnail Image
    When can we trust responders? Serious concerns when using 50% response rate to assess clinical trials
    Karoly, PJ ; Romero, J ; Cook, MJ ; Freestone, DR ; Goldenholz, DM (Wiley, 2019-09-01)
    Individual seizure rates are highly volatile, with large fluctuations from month‐to‐month. Nevertheless, changes in individual mean seizure rates are used to measure whether or not trial participants successfully respond to treatment. This study aims to quantify the challenges in identifying individual treatment responders in epilepsy. A power calculation was performed to determine the trial duration required to detect a significant 50% decrease in seizure rates (P < .05) for individuals. Seizure rate simulations were also performed to determine the number of people who would appear to be 50% responders by chance. Seizure rate statistics were derived from long‐term seizure counts recorded during a previous clinical trial for an implantable seizure monitoring device. We showed that individual variance in monthly seizure rates can lead to an unacceptably high false‐positive rate in the detection of individual treatment responders. This error rate cannot be reduced by increasing the trial population; however, it can be reduced by increasing the duration of clinical trials. This finding suggests that some drugs may be incorrectly evaluated as effective; or, conversely, that helpful drugs could be rejected based on 50% response rates. It is important to pursue more nuanced approaches to measuring individual treatment response, which consider the patient‐specific distributions of seizure rates.
  • Item
    Thumbnail Image
    Postictal suppression and seizure durations: A patient-specific, long-term iEEG analysis
    Payne, DE ; Karoly, PJ ; Freestone, DR ; Boston, R ; D'Souza, W ; Nurse, E ; Kuhlmann, L ; Cook, MJ ; Grayden, DB (WILEY, 2018-05)
    OBJECTIVE: We report on patient-specific durations of postictal periods in long-term intracranial electroencephalography (iEEG) recordings. The objective was to investigate the relationship between seizure duration and postictal suppression duration. METHODS: Long-term recording iEEG from 9 patients (>50 seizures recorded) were analyzed. In total, 2310 seizures were recorded during a total of 13.8 years of recording. Postictal suppression duration was calculated as the duration after seizure termination until total signal energy returned to background levels. The relationship between seizure duration and postictal suppression duration was quantified using the correlation coefficient (r). The effects of populations of seizures within patients, on correlations, were also considered. Populations of seizures within patients were distinguished by seizure duration thresholds and k-means clustering along the dimensions of seizure duration and postictal suppression duration. The effects of bursts of seizures were also considered by defining populations based on interseizure interval (ISI). RESULTS: Seizure duration accounted for 40% of postictal suppression duration variance, aggregated across all patients and seizures. Seizure duration accounted for more than 25% of the variance in postictal suppression duration in 2 patients and accounted for less than 25% in the remaining 7. In 3 patients, heat maps showed multiple distinct postictal patterns indicating multiple populations of seizures. When accounting for these populations, seizure duration accounted for less than 25% of the variance in postictal duration in all populations. Variance in postictal suppression duration accounted for less than 10% of ISI variance in all patients. SIGNIFICANCE: We have previously demonstrated that some patients have multiple seizure populations distinguishable by seizure duration. This article shows that different seizure populations have distinct and consistent postictal behaviors. The existence of multiple populations in some patients has implications for seizure management and forecasting, whereas the distinct postictal behaviors may have implications for sudden unexpected death in epilepsy (SUDEP) prediction and prevention.
  • Item
    Thumbnail Image
    Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast
    Payne, DE ; Dell, KL ; Karoly, PJ ; Kremen, V ; Gerla, V ; Kuhlmann, L ; Worrell, GA ; Cook, MJ ; Grayden, DB ; Freestone, DR (WILEY, 2021-02)
    OBJECTIVE: Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS: This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS: For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE: Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
  • Item
    Thumbnail Image
    Forecasting cycles of seizure likelihood
    Karoly, PJ ; Cook, MJ ; Maturana, M ; Nurse, ES ; Payne, D ; Brinkmann, BH ; Grayden, DB ; Dumanis, SB ; Richardson, MP ; Worrell, GA ; Schulze-Bonhage, A ; Kuhlmann, L ; Freestone, DR (Wiley, 2020-03-27)
    Objective Seizure unpredictability is rated as one of the most challenging aspects of living with epilepsy. Seizure likelihood can be influenced by a range of environmental and physiological factors that are difficult to measure and quantify. However, some generalizable patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit circadian rhythms in their seizure times, and many also show slower, multiday patterns. Seizure cycles can be measured using a range of recording modalities, including self‐reported electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile seizure diary app. Methods Forecasts based on circadian and multiday seizure cycles were tested pseudoprospectively using data from 50 app users (mean of 109 seizures per subject). Individuals' strongest cycles were estimated from their reported seizure times and used to derive the likelihood of future seizures. The forecasting approach was validated using self‐reported events and electrographic seizures from the Neurovista dataset, an existing database of long‐term electroencephalography that has been widely used to develop forecasting algorithms. Results The validation dataset showed that forecasts of seizure likelihood based on self‐reported cycles were predictive of electrographic seizures for approximately half the cohort. Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their time in a low‐risk state, with 14.8% of their time in a high‐risk warning state. On average, 69.1% of seizures occurred during high‐risk states and 10.5% of seizures occurred in low‐risk states. Significance Seizure diary apps can provide personalized forecasts of seizure likelihood that are accurate and clinically relevant for electrographic seizures. These results have immediate potential for translation to a prospective seizure forecasting trial using a mobile diary app. It is our hope that seizure forecasting apps will one day give people with epilepsy greater confidence in managing their daily activities.
  • Item
    Thumbnail Image
    Methods for the Detection of Seizure Bursts in Epilepsy
    Seneviratne, U ; Karoly, P ; Freestone, DR ; Cook, MJ ; Boston, RC (FRONTIERS MEDIA SA, 2019-02-27)
    Background: Seizure clusters and “bursts” are of clinical importance. Clusters are reported to be a marker of antiepileptic drug resistance. Additionally, seizure clustering has been found to be associated with increased morbidity and mortality. However, there are no statistical methods described in the literature to delineate bursting phenomenon in epileptic seizures. Methods: We present three automatic burst detection methods referred to as precision constrained grouping (PCG), burst duration constrained grouping (BCG), and interseizure interval constrained grouping (ICG). Concordance correlation coefficients were used to confirm the pairwise agreement between common bursts isolated using these three automatic burst detection procedures. Additionally, three graphical methods were employed to demonstrate seizure bursts: modified scatter plots, staircase plots, and dropline plots. Burst detection procedures are demonstrated on data from continuous intracranial ambulatory EEG monitoring in a patient diagnosed with drug-refractory focal epilepsy. Results: We analyzed 1,569 seizures, from our assigned index patient, captured on ambulatory intracranial EEG monitoring. A total of 31, 32, and 32 seizure bursts were detected by the three quantitative methods (BCG, ICG, and PCG), respectively. The concordance correlation coefficient was ≥0.99 signifying considerably stronger than chance burst detector agreements with one another. Conclusions: Bursting is a quantifiable temporal phenomenon in epilepsy and seizure bursts can be reliably detected using our methodology.
  • Item
    No Preview Available
    The circadian profile of epilepsy improves seizure forecasting
    Karoly, PJ ; Ung, H ; Grayden, DB ; Kuhlmann, L ; Leyde, K ; Cook, MJ ; Freestone, DR (OXFORD UNIV PRESS, 2017-08)
    It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy.
  • Item
    No Preview Available
    Bursts of seizures in long-term recordings of human focal epilepsy
    Karoly, PJ ; Nurse, ES ; Freestone, DR ; Ung, H ; Cook, MJ ; Boston, R (WILEY, 2017-03)
    OBJECTIVE: We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies. METHODS: Chronic ambulatory intracranial electroencephalography (EEG) data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to nonburst events to evaluate event dispersion, duration and dynamics. RESULTS: Bursts of seizures were present in 6 of 15 subjects, and detections were consistent over long-term monitoring (>2 years). Subjects with bursts of seizures had highly overdispersed seizure rates, compared to other subjects. There was a complicated relationship between bursts and clinical seizures, although bursts were associated with multimodal distributions of seizure duration, and poorer predictive outcomes. For three subjects, bursts demonstrated distinctive preictal dynamics compared to clinical seizures. SIGNIFICANCE: We have previously hypothesized that there are distinct physiologic pathways underlying short- and long-duration seizures. Herein we show that burst seizures fall almost exclusively within the short population of seizure durations; however, a short duration event was not sufficient to induce or imply bursting. We can therefore conclude that in addition to distinct mechanisms underlying seizure duration, there are separate factors regulating bursts of seizures. We show that bursts were a robust phenomenon in our patient cohort, which were consistent with overdispersed seizure rates, suggesting long-memory dynamics.
  • Item
    Thumbnail Image
    Seizure pathways: A model-based investigation
    Karoly, PJ ; Kuhlmann, L ; Soudry, D ; Grayden, DB ; Cook, MJ ; Freestone, DR ; Marinazzo, D (PUBLIC LIBRARY SCIENCE, 2018-10)
    We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.
  • Item
    Thumbnail Image
    Seizure Prediction: Science Fiction or Soon to Become Reality?
    Freestone, DR ; Karoly, PJ ; Peterson, ADH ; Kuhlmann, L ; Lai, A ; Goodarzy, F ; Cook, MJ (SPRINGER, 2015-11)
    This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.